Designing for Pedestrian Safety

Treatments at Unsignalized Pedestrian Crossings

Presented by:

Charlie Zegeer
PBIC Director

August 17, 2010
Crossing Crashes

Part 1: General Principles
Why do people cross the street?

Because there’s someplace good on the other side.
People shouldn’t have to run to cross a street
People shouldn’t have to run to cross a street.
Ideally, we’d always cross at locations with positive control
But we can’t provide signals everywhere people cross
These people are not criminals...

They’re simply trying to deal with a situation
Pedestrian behavior varies:
Some use crosswalks, others don’t
Principle # 1

Pedestrians want & need to cross the street safely
Principle # 2

Drivers need to understand pedestrians’ intent
Principle # 3

Keep Crossings Short

⇒ Impacts of long crossing distance:

- Increases exposure time
- Increases vehicle-pedestrian conflict
- Increases vehicle delay
- Decreases ability of slower pedestrians to cross
Principle # 4: Speed Matters

1. Drivers’ field of vision & ability to see pedestrians
2. Drivers’ ability to react and avoid a crash
3. Crash Severity

15 MPH
As speed increases, driver focuses less on surroundings

15 MPH
As speed increases, driver focuses less on surroundings

20 MPH
As speed increases, driver focuses less on surroundings

25 MPH
As speed increases, driver focuses less on surroundings

30 MPH
Speed Affects Crash Avoidance

High speeds equate to greater reaction and stopping distance
Speed Affects Crash Severity

High speeds lead to greater chance of serious injury & death

Pedestrians’ chances of death if hit by a motor vehicle

SOURCE: Killing Speed and Saving Lives, UK Department of Transportation
Traffic-calming methods such as curb extensions help slow traffic.
Principle #5

Pedestrians will cross where it’s most convenient
Midblock vs. Intersection

- People choose based on their perceived risk
- The data is inconclusive
Crossing Crashes

Part 2: Countermeasures
Basic Street Crossing Measures

- Crosswalks
- Illumination
- Signs
- Striping
- Medians/pedestrian islands
- Signals
- Over/undercrossings
Billgeville's new pedestrian monkey bars not only reduced accidents but also whipped people into great shape.
Crosswalks

Crosswalk FAQ’s:

⇒ Why are they marked?
⇒ Where should they be marked?
⇒ Do marked crosswalks increase safety, or provide a “false sense of security?”
1. Why are crosswalks provided?

- To indicate to pedestrians where to cross
- To indicate to drivers where to expect pedestrians
2. How to determine where to mark a crosswalk?
2. How to determine where to mark a crosswalk?

MUTCD Guidance on Crosswalks (2009):

- Crosswalk markings provide guidance for pedestrians who are crossing roadways by defining and delineating paths on approaches to and within signalized intersections, and on approaches to other intersections where traffic stops.

- In conjunction with signs and other measures, crosswalk markings help to alert road users of a designated pedestrian crossing point across the roadway at locations that are not controlled by traffic control signals or STOP or YIELD signs. Crosswalk lines should not be used indiscriminately.

- An engineering study should be performed before a marked crosswalk is installed at a location away from a traffic signal or an approach controlled by a STOP or YIELD sign.
2. How to determine where to mark a crosswalk?

- Consider origins and destinations
- In this case, apartments across from bus stop & stores
Many Locations are not Suitable for a Marked Crosswalk
Not a good location for a marked crosswalk:

No particular reason for driver to expect pedestrians
Not a good location for a marked crosswalk:

Poor sight distance
Many Locations are Suitable for a Marked Crosswalk
Suitable location for a marked crosswalk:

Two-lane, high use, driver expectancy
Suitable location for a marked crosswalk:

Slow speed, high use, driver expectancy
3. Do marked crosswalks increase safety, or encourage people to cross without looking?
Results of Most Recent Study (Zegeer et al 2002)

Marked vs. Unmarked Analysis

- Two-lane roads: No significant difference in crashes
- Multilane roads (*3 or more lanes*)
 - Under 12,000 ADT: no significant difference in crashes
 - Over 12,000 ADT w/ no median: crashes marked > crashes unmarked
 - Over 15,000 ADT & w/ median: crashes marked > crashes unmarked
Study Results

- Median reduces crashes by 40%
- Pedestrians over 65 are over-represented in crosswalk crashes
- Pedestrians are not less vigilant in marked crosswalks:
 - Looking behavior increased after crosswalks installed
Study Results

- Crashes correlate with ADT & number of travel lanes.
- Other studies have shown same results
One explanation of higher crash rate at marked crosswalks: multiple-threat crash

- 1st car stops too close, masks visibility for driver in 2nd lane
- Solution: advance stop bar (comes later...)

Designing for Pedestrian Safety – Unsignalized Crossings
Study Recommendations

1. OK to mark crosswalks on 2-lane roadways

2. On multi-lane roadways, marked crosswalks alone are not recommended on roadways with:
 - ADT > 12,000 w/o median
 - ADT > 15,000 w median*
 - Speeds greater than 40 mph

3. Use raised medians to reduce risk

4. Signals or other treatments should be considered where many young and/or elderly pedestrians

Note: effect of advance stop bar not studied (none at any observed sites)
Change to 2009 MUTCD

⇒ “New marked crosswalks alone, without other measures designed to reduce traffic speeds, shorten crossing distances, enhance driver awareness of the crossing, and/or provide active warning of pedestrian presence, should not be installed across uncontrolled roadways where the speed limit exceeds 40 mph and either:

A. The roadway has four or more lanes of travel without a raised median or pedestrian refuge island and an ADT of 12,000 vehicles per day or greater;

or

B. The roadway has four or more lanes of travel with a raised median or pedestrian refuge island and an ADT of 15,000 vehicles per day or greater.”
Increase Effectiveness Of Crosswalks With:

- Proper location
- High Visibility Markings
- Illumination
- Signing
- Advance Stop Bars
- Median Islands
- Curb Extensions
- Signals
Key Quotes from the Study Conclusion

“When considering marked crosswalks at uncontrolled locations, the question should not be simply, “Should I provide a marked crosswalk or not?”...

“Regardless of whether marked crosswalks are used, there remains the fundamental obligation to get pedestrians safely across the street. In most cases, marked crosswalks are best used in combination with other treatments (e.g., curb extensions, raised crossing islands, traffic signals, roadway narrowing, enhanced overhead lighting, traffic calming measures)....”

“In all cases, the final design must accomplish the goal of getting pedestrians across the road safely....”

“The design question is, “How can this task [getting pedestrians across the road safely] best be accomplished?”
Marked crosswalk must be visible to the DRIVER

What the pedestrian sees
Marked crosswalk must be visible to the DRIVER

What the driver sees (same crosswalk)
Crosswalk Visibility

Crosswalk Marking Types
Longitudinal markings with transverse markings – very visible
Place longitudinal markings placed to avoid wheel tracks, reducing wear & tear & maintenance
Staggered ladder improves visibility from afar
Illumination – Essential For Any Crossing

Marked crosswalk?

⇒ Light it.

⇒ Up to 50% of ped crashes occur at night
Illumination!

Lighting reduces the odds of pedestrian fatalities:

- by 42% at midblock locations
- by 54% at intersections
Informational Report on Lighting Design for Midblock Crosswalks

FHWA-HRT-08-053
April 2008
Sample Illustrations from New FHWA Report

Fig 11. Traditional midblock crosswalk lighting layout

Fig 12. New design for midblock crosswalk lighting layout

Recommended lighting level: 20 lux at 5’ above pavement

Fig 13. Traditional intersection lighting layout
Fig 14. New design for intersection lighting layout for crosswalks.
Fig 15. New design for wide roadway intersection lighting layout for crosswalks
Ped crossing signs: old vs. new MUTCD standards

Old

Primary Location: in advance of crosswalk

New

Supplemental at crosswalk

Placement
In-street pedestrian crossing signs

MUTCD signs
Yield or Stop depends on state law
In-street signs increase yield rates, especially on slow-speed streets.
Rectangular Rapid Flash LED Beacon

- Received Interim approval to MUTCD with separate warrants for use
- Studies indicate motorist yield rates increased from about 20% to 80%
- Beacon is yellow, rectangular, and has a rapid “wig-wag” flash
- Beacon located between the warning sign and the arrow plaque
- Must be pedestrian activated (pushbutton or passive)
Beacons required on the both right side and on the left side or in a median if practical.
Advance Stop or Yield Line: Reduces Multiple-threat Crashes
Multiple Threat Crash Problem

→ 1st car stops to let pedestrian cross, blocking sight lines

→ 2nd car doesn’t stop, hits pedestrian at high speed
Multiple Threat Crash Solution

Advance stop/yield line

⇒ 1st car stops further back, opening up sight lines

⇒ 2nd car can be seen by pedestrian
R1-5a

Signs in the 2003 MUTCD
(Use where local law says yield to pedestrians)

R1-5b

Signs in the 2009 MUTCD
(Use where local law says stop for pedestrians)
Advanced yield line (shark’s teeth) & sign
Advanced stop line and sign
MUTCD recommends 20’ to 50’ setback
30’ preferred for maximum effectiveness
Marking a Crosswalk Summary

- When is it OK to mark a crosswalk without other treatments?
 - 2-lane roads < 40 mph
 - Multi-lane roads w/ ADT < 12,000 or 15,000 (median)

- How can you increase the effectiveness of marked crosswalks?
 - Marked crosswalk: Add median, advance stop line
 - Textured crosswalks: Smooth and white is best
 - Signs: In road; supplement with striping
 - In all cases (nighttime): Illumination!
Raised Medians And Islands Reduce Pedestrian Crashes:

- At marked crosswalks
 - CRF = 46%

- At unmarked crosswalks
 - CRF = 39%
Continuous raised median – basic principle:

Breaks long complex crossing into two simpler crossings
A flush median is not a refuge
Add a raised island
Crossing island at marked crosswalk - same principle:

Breaks long complex crossing into two simpler crossings
Option:

- stagger or angle cut-through so pedestrians face oncoming traffic before 2nd crossing
Pedestrian Signal
Now easier to meet pedestrian volume warrant
Provide a HOT response

Otherwise pedestrians won't wait for the light
If wait is too long, pedestrians will seek gaps
And then traffic waits for no reason
Pedestrian Signal

2-stage crossing increases effectiveness and disrupts traffic less
Stage 1: Pedestrian stops traffic in one direction
Stage 1: Pedestrian crosses to median island
Stage 1 over: Traffic in one direction resumes
Stage 2: Pedestrian stops traffic in other direction
Stage 2 over:
Traffic resumes
Detail 1:
Requires pedestrian push button on island
Detail 2:
Fences force pedestrians to walk against on-coming traffic
Pedestrian Hybrid Beacon aka “HAWK” (High Intensity Activated Crosswalk)
Drivers see Hybrid Beacon

Peds see Pedhead
Hybrid Beacon Sequence

1. Blank for drivers
2. Flashing yellow
3. Steady yellow
4. Steady red
5. Wig-Wag
Return to 1
Over & Undercrossings
In theory, grade separation = no conflicts
In reality, pedestrians often ignore structures

Placing themselves in greater danger
Sometimes fences are needed to direct users
Grade separation

Grade separation is more useful for purposes beyond simply crossing from sidewalk to sidewalk.

To connect buildings
To connect land uses
To cross freeways
Light rail stations
Overcrossings

Overcrossings are expensive because of their height, which requires long ramps.

- ADA requires a ramp
Undercrossings

- Undercrossings require generous dimensions to be attractive: security is the main issue
- Users must see light at the end of the tunnel
Undercrossing must not intimidate potential user
Elevated roadway allows open, airy undercrossing
Undercrossings work best if well lit & attractive

Light provided by design
Over/undercrossings should be a last resort

⇒ Why are they not effective for street crossings?
 ▪ They add out-of-direction travel

⇒ When are they useful?
 ▪ To connect land uses separated by a major roadway

⇒ How can you increase their effectiveness?
 ▪ By providing a direct route
 ▪ By providing security
Crossing treatments cost comparison:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cost</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signing</td>
<td>$500 – 1,000</td>
<td>*</td>
</tr>
<tr>
<td>High visibility markings</td>
<td>$2,000 – 15,000</td>
<td>**</td>
</tr>
<tr>
<td>Advance stop bars</td>
<td>$1,000 – 2,000</td>
<td>****</td>
</tr>
<tr>
<td>Illumination</td>
<td>$5,000 – 15,000</td>
<td>****</td>
</tr>
<tr>
<td>Median Islands</td>
<td>$10,000 – 30,000</td>
<td>****</td>
</tr>
<tr>
<td>Signals</td>
<td>$35,000 – 150,000</td>
<td>***</td>
</tr>
<tr>
<td>Over/undercrossings</td>
<td>$500,000 – 2,000,000</td>
<td>*</td>
</tr>
</tbody>
</table>
“Right design invites right use”
Designing for Pedestrian Safety – Unsignalized Crossings
Education: Transit Riders
Education: The Elderly
Driver Education & Enforcement

Designing for Pedestrian Safety – Unsignalized Crossings
Questions?
Thank You!

Additional Resources

- Engineering solutions: http://www.walkinginfo.org/engineering
- FAQs: http://www.walkinginfo.org/faqs, subject heading “engineering”

Next PBIC Livable Communities Webinar:

- “Community Approaches to Pedestrian Safety Education”
 Thursday, March 18, 2-3:30pm ET
 Register at http://www.walkinginfo.org/webinars
- Archive at http://www.walkinginfo.org/webinars
 Downloadable and streaming recording, transcript, presentation slides

Questions?

- Call Jeremy Pinkham, UNC Highway Safety Research Center, 919-843-4859
- Write to webinars@hsrc.unc.edu