Designing for Pedestrian Safety

Intersection Geometry

Presented by:

John LaPlante
T.Y. Lin International, Inc

Keith Sinclair
FHWA Resource Center

September 9, 2010
Learning Outcomes

At the end of this module, you will be able to:

- Explain why tight/right angle intersections are best
- Describe why pedestrians need access to all corners
- Assess good crosswalk placement: where peds want to cross & where drivers can see them
- Explain how islands can break up complex intersections
Intersection Crashes
Some basic facts:

1. Most (urban) crashes occur at intersections
2. Most occur at signalized intersections
3. Most are associated with turning movements
4. Geometry matters: keeping intersections tight, simple & slow speed make them safer for everyone
Small, tight intersections best for pedestrians...

Simple, few conflicts, slow speeds
Large intersections can work for pedestrians – with mitigation
Skewed intersections

Skew increases crossing distance & speed of turning cars
Cars can turn at high speed
Skew increases crosswalk length, decreases visibility
Right angle decreases crosswalk length, increases visibility
Skewed intersection reduces visibility
Driver looks left, doesn’t see pedestrian on right
Adjust skew by bringing out curb
Result: driver behavior change
Curb radius – small radii are safer for pedestrians

Large radii:

1. Increase crossing distance and
2. Make crosswalk & ramp placement more difficult
Effect of large radius on crosswalk:

It adds to crossing distance...

Additional area to cross
+ Higher speed turns
Effect of large radius on crosswalk:

...and makes it hard to figure out where to cross
Effect of large radius on drivers

They drive fast...
Effect of large radius on drivers

...ignoring pedestrians
Minimize curb radius

1. Calculate effective radius:
 Larger than built radius if travel lanes offset from curb with parking and/or bike lane
Minimize curb radius

2. At one-way streets, corner with no turns can have tight radius
Minimize curb radius

3. Don’t choose larger design vehicle than necessary

(Bus makes turn several times an hour)
Minimize curb radius

4. Don’t choose larger design vehicle than necessary

(Moving van, once or twice a year; peds cross every day)
Minimize curb radius

5. Where appropriate, let trucks use 2nd lane
Minimize curb radius

6. Trucks can make very tight turns at slow speeds
Minimize curb radius

7. Turn common Single Unit truck (SU-30) into near lane
Minimize curb radius

7. Turn less common Semi (WB-50) into 2nd lane
CRF for curb radii: not yet known

Although an exact number has not been determined, a study conducted by Zegeer et al. in Florida showed a correlation between large radii and higher pedestrian crash rates with right turning vehicles.
Discussion:

What are your policies & practices regarding corner radii?
Curb extensions

- Most focus is on reduced crossing distance

- Other advantages:
 - Better visibility between ped and motorists
 - Traffic calming
 - Room for street furniture

- Curb extensions should be the width of the parking lane and not encroach on bike lanes or travel lanes
Better Visibility
Pedestrians wait where they can see, in front of parked cars.

Curb ext. places pedestrian where he can see and be seen.
Before: high speed right-turns
After: slow speed right-turns

Curb extension and new corner radius must be designed together – see earlier radius discussion
Curb ext. increases likelihood drivers will yield to peds
Curb extensions allow room for street furniture
But use care not to block sight lines
Curb extensions enable signs to be moved in
Curb extensions enable signs to be moved in
Curb extensions enable signs to be moved in
Drainage solutions 1. Additional inlet
Drainage solutions 2. Slotted drain
Drainage solutions 3. Leave original curb + islands
Drainage solutions 4. Same as before + plate
Curb Extension Integrated with the Sidewalk

“Parking pockets” in furniture zone have similar surface materials as the sidewalk
Before: road looks and feels wide
After: curb extension integral to sidewalk
Street looks narrow even with no parked cars
Reminder – crosswalks are provided:

1. To tell pedestrians where to cross
2. To tell drivers where to expect pedestrians
Crosswalks should normally be placed on all legs of an intersection
Should there be a crosswalk here?
Of course!
Closing a crosswalk is not the answer

Large intersection is capacity driven, pedestrian unfriendly...
Will she wait?

Is crossing 15 lanes safer than crossing 5 lanes?

Here’s what pedestrians are expected to do
Crosswalk placement requires balancing several goals that sometimes compete:

- Shortest crosswalk length
- Minimal crosswalk setback to:
 - Reduce out-of-direction travel
 - Provide good sight lines between peds and motorists
- Proper ramp placement:
- Ramps entirely contained in crosswalk
- Two ramps preferred whenever possible
Small corner radii allow two ramps, shortest crosswalks, direct travel paths
Larger radii create large undefined areas
Crosswalks at shortest crossing = longer walking distance
Crosswalks at shortest crossing = longer walking distance

Right & left-turning drivers don’t see crosswalk
Single ramp reduces crosswalk setback but lengthens crosswalk
Balancing the goals works best

Note:
Crosswalk length and setback are greater with large radii than with small radii.
Balancing the goals works best

Note: 3” curb exposure between ramps allows them to be close together
Crosswalk placement: Observe pedestrians
Crosswalk placement: Think like a pedestrian
“When in doubt, paint it out!”

Crosswalks can have odd shapes to take pedestrians where they want to go.
Discussion:

What are your policies & practices regarding crosswalk placement?
Pedestrian Islands

Benefits:

- Separate conflicts & decision points
- Reduce crossing distance
- Improve signal timing
- Reduce crashes
Imagine the signal timing without island
Right-Turn Slip Lane: Design for Pedestrians

High speed, head turner = low visibility of pedestrians

Slow speed, good angle = good visibility of pedestrians
Right-Turn Slip Lane - Details

- Cut through medians and islands for pedestrians
- 2:1 length/width ratio
- Bicycle lane
- 55° to 70° between vehicular flows
- 25’ to 40’ radius depending on design vehicle
- Crosswalk one car length back
- Long radius followed by short
- 150 to 275’ radius
Drivers naturally trace the right island shape
Peds could start crossing here...
... instead of here
Should we mark this crosswalk?
Yes: It’s a yield-controlled approach, and it may not be clear where peds cross.
Raised islands can improve a large multi-lane intersection
Raised islands can improve a large multi-lane intersection

1. Build raised islands between thru & RT lanes to separate ped/driver conflicts. Consolidate two crosswalks into one.
Raised islands can improve a large multi-lane intersection

1. Build raised islands between thru & RT lanes to separate ped/driver conflicts. Consolidate two crosswalks into one.

2. Move stop bar forward to improve capacity and safety for motorists
Island Design Details

- Cut-through preferred over ramps
- Truncated domes at cut-throughs
- 8’ or more preferred width – 6’ minimum
With ramps, provide at least 48” level area
NOT Okay
Designing for Pedestrian Safety – Intersection Geometry

Not acceptable

Acceptable, not great
Best:

Bullet nose protects pedestrians from high-speed left-turning cars
How to place a crosswalk at porkchop island

1. Place crosswalks to island
How to place a crosswalk at porkchop island

2. Trace 3rd line where they meet
How to place a crosswalk at porkchop island

3. Place 3rd crosswalk there
Discussion:

What are your policies & practices regarding providing pedestrian islands?
Intersection Geometry: Recap of Design Measures

- Should pedestrians have access to all corners?
 - Yes
- Why?
 - Otherwise peds will dash across anyway
- Intersection geometry should be?
 - Tight (small radii); right angles
- How do you break up complex intersections?
 - With islands
- Where should you place crosswalks?
 - Where pedestrians want to cross and where drivers can see them
Intersection Geometry Learning Outcomes

You should now be able to:

1. Explain why tight/right angle intersections are best
2. Describe why pedestrians need access to all corners
3. Assess good crosswalk placement: where peds want to cross & where drivers can see them
4. Explain how islands break up complex intersections
Questions?