

Signalized Intersections

Signalized Intersections

Presented by:

Michael Moule

Principal Transportation Engineer

Nelson\Nygaard Consulting Associates, Inc.

September 27, 2010

Learning Outcomes

- ⇒ At the end of this module, you will be able to:
- ⇒ Explain why traffic signals don't "guarantee" safety: they assign the right of way
- ⇒ Identify major conflicts: *concurrent turn movements*
- ⇒ Select *protected turns* to improve ped safety
- ⇒ Identify signal timing techniques that favor ped crossings

Signalized Intersections Can Be Improved For Pedestrians By:

- 1. Using good geometric design
- 2. Placing islands to break up complex crossings
- 3. Placing crosswalks in logical locations
- 4. Providing pedestrian signal heads
- 5. Placing push-buttons in convenient locations
- 6. Timing signals to minimize ped delay & conflicts

1, 2 & 3 addressed in earlier module

Traffic signals assign the of right of way, regulate the flow of traffic and create gaps

Traffic signals do not guarantee safety – in fact, signalized intersections have more crashes than non-signalized

Turn movements often result in conflicts

Turn movements often result in conflicts

Traffic signals don't ensure protection

Peds routinely ignore the light (usually quite safely)

Traffic signals don't ensure protection

Pedestrians will cross where it's convenient

Traffic signals don't ensure protection

Red-light running

Concurrent left turns on Green

Pedestrians are at risk when crossing with the light

Pedestrian Signals at Signalized Intersections (AKA Ped Heads/Pedestrian Indicators) Need and Placement

Pedestrian signals should be provided, Otherwise pedestrians don't know when to cross

Pedestrian signals should be provided, Otherwise pedestrians don't know when to cross

Lack of pedestrian signals on one way street: The pedestrian may not notice the signal

Lack of pedestrian signals on one way street: The pedestrian may not notice the signal

Ped head placement: close to crosswalk, visible to pedestrians, especially with long crosswalk

Poor example

Good example

Two-step signals: ensure pedestrians don't see conflicting signals

These pedestrians kept walking, against light

Old System

- 1. Ped symbol or WALK
- 2. Flashing Hand or DON'T WALK
- 3. Steady Hand or DON'T WALK
 1/2 of Americans don't
 understand it;
 Is there a better system?
 - * Flashing orange hand/DON'T WALK is ped clearance interval: very counterintuitive

Problem with old system: People not sure if they can start during flashing hand / DON'T WALK

Countdown pedestrian signal tells pedestrians how much crossing time is left

Countdown pedestrian signal research results:

- 1. Pedestrians understand how it works
- 2. More people start crossing during clearance phase, but...
- 3. Fewer people initiate walk late in clearance phase
- 4. No pedestrians left in crosswalk in steady don't walk
- 5. Drivers don't take a cue and accelerate to beat the light

What about crash reduction?

Results from San Francisco study are promising: CRF = 25% after countdown signals installed

Change included in 2009 MUTCD

- Countdown displays
 required for new
 pedestrian signals
 (except the rare situation where the
 change interval is 7 seconds or less)
- ⇒ Why? Significant reductions in pedestrian-vehicle crashes, as well as all types of crashes

Discussion:

⇒ What are your policies & practices regarding the provision of pedestrian indicators and countdown signals?

Placing Push-buttons In Convenient Locations

MUTCD Recommendations:

⇒ In line with crosswalk;

- ⇒ Between 1.5' and 6' from curb
- ⇒ Buttons at least 10' apart;
- **⇒** Button face parallel to xwalk

□ The MUTCD recommends these dimensions

Inconspicuous

Too far from ramp

Behind guardrail

Behind vegetation

At back of pole

In front of pole

All of the Above?

On side of pole

At top of ramp

Communicate With Pedestrians

LED tells peds the button works and the signal has received the call (like an elevator)

Tactile arrow gives direction to blind and sighted pedestrians

New Requirement in the 2009 MUTCD

⇒ Positioning of pedestrian pushbuttons and legends on pushbutton signs shall clearly indicate which crosswalk signal is activated by each pushbutton

Signal Timing & Walking Speeds

Pedestrian Walking Speeds

2003 MUTCD requirements:

- ⇒ 7 sec steady walk (peds may enter crosswalk); 4 sec "option"
- ⇒ Pedestrian clearance time calculated at 4'/sec curb-to-curb
- ⇒ 60' crosswalk requires 15 sec
- ⇒ 15 + 7 = 22 sec absolute minimum walk plus clearance

Pedestrian Walking Speeds

2009 MUTCD:

- ⇒ 7 sec walk, 4 sec option (no change)
- ⇒ Ped clearance time calculated at 3.5'/sec curb-to-curb.
- ⇒ 60' crosswalk requires 17 sec
 - 7 + 17 = 24 sec total
- Additional test for walk plus clearance time: Calculate travel time from push button (or 6' feet from curb if no button) to curb on other side at 3'/sec
 - 60' crosswalk + 6' = 66'
 - 66' requires 22 sec
 - 24 sec > 22 sec; passes test.

Guidance for walk <u>plus</u> clearance: Calculate time from pushbutton (or 6' from curb) to curb on other side at 3'/sec

60' crosswalk + 6' = 66' total; @ 3'/sec = 22 sec walk plus ped clearance Note: pushbutton is considered the departure point for older pedestrians and people in wheelchairs.

Reducing Pedestrian & Left-Turning Vehicle Conflicts

Protected Vs. Permissive Left Turns

- ⇒ At signals, turning movements account for most ped crashes;
 Left/right turn ratio is roughly 2:1
- * CRF 70% (all crashes) converting permissive left turns to protected only left turns

Permissive Left Turns

Protected Left Turns

Protected Left Turns

Protected/permissive Left Turns Pedestrians cross after most leftturning cars (protected phase); Pedestrian and remaining cars <u>are</u> in conflict (permissive phase)

Protected/permissive Left Turns

Protected/permissive Left Turns

Protected/permissive Left Turns: Solutions

1. Provide protected-permissive phasing by default, but revert to protected-only when pedestrian button is pushed

2. Flashing Yellow Arrow (details on the next slide)

Protected/permissive Left Turns: Solutions 5. Steady Green Ball U.S. Department of Transportation

Protected/permissive Left Turns: Solutions 6. Flashing Yellow Turn Arrow

Discussion

- ⇒ What are your traffic signal timing policies?
- □ Do you use protected left turns to protect pedestrians from turning vehicles?
- ⇒ Do you use protected/permissive phasing?
- ⇒ If so, have you considered flashing left yellow arrow during the steady green ball?

Signal Timing To Minimize Pedestrian Delay & Conflicts

Use Short Signal Cycle Length

Long wait causes stacking: pedestrians wait in street, or don't wait and cross against the signal

At high-use crosswalks, pedestrians should get a signal at every cycle

Set pedestrian signals to recall to WALK when major street is set to recall to green

LPI

- ⇒ LPI = Lead Pedestrian Interval
- ⇒ LPI gives pedestrians a head start
- **⇒** Looks like a regular signal to drivers

Looks like a regular signal to drivers: green-yellow-red

LPI: WALK comes on at least 3 seconds prior to the green signal; pedestrians enter crosswalk before turning vehicles arrive there.

Where do the extra 3-5 seconds come from? **Walk Signal** U.S. Department of Transportation Federal Highway Administration

Where do the extra 3-5 seconds come from?

Where do the extra 3-5 seconds come from? Car waits to turn U.S. Department of Transportation

Where do the extra 3-5 seconds come from?

□ These peds waited 3 cycles before turning drivers let them cross as legally required. LPI would give them a head start.

⇒ CRF: 5%

Simple & Innovative Ideas To Minimize Pedestrian Conflicts

Signs: Remind Turning Drivers to Yield to Peds

Older local variations, using MUTCD-approved lettering and symbols:

Juneau, AK

Orlando, FL

Signs: Remind Turning Drivers to Yield to Peds

TURNING
TRAFFIC
MUST
YIELD TO
PEDESTRIANS

Old MUTCD R10-15

R10-15 in 2009 MUTCD

- □ Consider No Turn on Red signs where there is:
 - Poor sight distance between vehicles and peds;
 - An unusual number of ped conflicts with turns on red (compared to turns on green);
 - An exclusive pedestrian phase; or
 - A leading pedestrian interval

1. At all times

- 2. When pedestrians are present
 - Difficult to enforce

- 3. By time of day
 - Limits most turns on red

- 4. Changeable message sign can be activated when ped pushes button or as set by controller
 - Note: An on-demand NTOR sign can be used to improve the effectiveness of a Lead Pedestrian Interval

Exclusive Pedestrian Phase (Barnes Dance)

Popular because all traffic stops and pedestrians can cross in any direction (must ban turns on red)

Pedestrians pay a price in delay: Pedestrians wait for traffic in one direction

Pedestrians wait for traffic in other direction

Reward: pedestrians can cross in any direction

- ⇒ Exclusive pedestrian phase increases safety (CRF 34%)
 but decreases efficiency of intersection
- ⇒ Use where there are high ped volumes and many turning vehicles

Using ITS to Help Pedestrians

- □ In this example a high-tech signal was used to help slower pedestrians cross the street with minimal delay to traffic.
- **⇒** A slower crossing speed would delay traffic significantly

Microwave sensors are aimed at the crosswalks to track peds

Pedestrian clearance is timed @ 4 ft/sec

The sensor tracks peds as they cross the street

- □ The controller adds 4 seconds crossing time if pedestrian hasn't finished crossing (8 seconds maximum)
- □ In this case, the walk phase was prolonged in 20% of crossings, reducing unnecessary traffic delay the other 80% of crossings.

Learning Outcomes

You should now be able to:

- Explain why traffic signals don't "guarantee" safety; they assign the right of way
- 2. Identify major conflicts: concurrent turn movements
- 3. Select protected turns to improve ped safety
- 4. Identify signal timing techniques that favor pedestrian crossing

Questions?

> For more information see archived TRB Webinar:

Accommodating Pedestrians at Signalized Intersections

https://www1.gotomeeting.com/register/622595628