

Designing for Pedestrian Safety

Interchanges

Presented by:

Hillary Isebrands FHWA Resource Center Safety Specialist

October 5, 2010

Interchanges Learning Outcomes

At the end of this module, you will be able to:

- □ Identify how land uses around freeway interchanges create pedestrian trips
- ⇒ Explain how and why pedestrian crashes occur at interchanges (driver expectation of pedestrians is very low; high-speed, free-flow movements)
- ⇒ Select slow-speed, right-angle urban designs

Land Use, Vehicles and Pedestrians

- □ Large commercial tracts generate traffic
- Employees walk to jobs at retailers, restaurants, service stations, & hotels
- ⇒ Visitors walk to and from restaurants and hotels
- ⇒ Pedestrians must cope with vehicles entering and exiting the freeway

□ Typical city has a few freeway interchanges

- □ Typical city has a few freeway interchanges
- And some noninterchange crossings

- □ Typical city has a few freeway interchanges
- ⇒ And some noninterchange crossings

- Non- interchange crossings are easier for pedestrians
- □ Interchanges have many conflicts

Accommodate all pedestrian movements:

1. Through interchange (east-west along arterial)

Accommodate all pedestrian movements:

- 1. Through interchange (east-west along arterial)
- 2. Across the arterial (north-south)

These crosswalks may be closed

These crosswalks must be open

Design interchanges to look like an intersection, then drivers are more likely to expect pedestrians

Consider each terminus as ½ an urban intersection

Avoid free-flow movements...

...they are difficult for pedestrians to cross

Avoid free-flow movements...

...they are difficult for pedestrians to cross

Avoid free-flow movements...

...they are difficult for pedestrians to cross

Positive Example: Reconfigured Ramp Terminus

- ⇒ Flat angle = wide crossing & high-speed turns
- ⇒ Tight angle = short crossing & slow speed turns

Positive Example: Reconfigured Ramp Terminus

- > Yellow line = old crosswalk
- ⇒ Green line = new crosswalk

Where free-flow ramps are used (least desirable) Crosswalk should be placed where it's visible

Where free-flow ramps are used (least desirable) Crosswalk should be placed where it's visible

Barrier should not obscure crosswalk

 □ Choosing the best crosswalk placement where it's not clear what's most logical for the driver or the pedestrian:

⇒ 3 choices:

- Most direct route
- Shortest crosswalk
- "Compromise" midway solution

Most Direct Route

Shortest Crosswalk

Midway Solution

Where to place crosswalk?

Observe pedestrians

- ⇒ Younger woman takes direct route (looks over shoulder)
- ⇒ Older man seeks crosswalk
- ⇒ YIELD TO PED signs indicate a problem

Where to place crosswalk?

Observe pedestrians

- ⇒ Younger woman takes direct route (looks over shoulder)
- ⇒ Older man seeks crosswalk
- ⇒ Midway would be used by both
- **⇒** YIELD TO PED signs indicate a problem

Single Point Urban Interchange (SPUI)

Single Point Urban Interchange

Signal timing; 3 movements are run through one signal

- 1. Through movements
- 2. Left turns in one direction
- 3. Left turns in other direction

Single Point Urban Interchange

Signal timing; 3 movements are run through one signal

- 1. Through movements
- 2. Left turns in one direction
- 3. Left turns in other direction

Single Point Urban Interchange

Signal timing; 3 movements are run through one signal

- Through movements
- 2. Left turns in one direction
- 3. Left turns in other direction

How to make SPUI work for pedestrians:

- ⇒ Provide continuous sidewalks
- **⇒** Break up crossings into several small steps
- Use good geometry; create tight, right-angle crossings;
- **→** Make it clear to drivers where to expect pedestrians

1. Ped walks next to well defined right-turn lane (RTL)

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island
- 4. Ped crosses entry lane; signal controlled

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island
- 4. Ped crosses entry lane; signal controlled
- 5. Ped proceeds on sidewalk on or under bridge

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island
- 4. Ped crosses entry lane; signal controlled
- 5. Ped proceeds on sidewalk on or under bridge
- 6. Ped crosses exit lane; signal controlled

SPUI Pedestrian crossing sequence:

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island
- 4. Ped crosses entry lane; signal controlled
- 5. Ped proceeds on sidewalk on or under bridge
- Ped crosses exit lane; signal controlled
- 7. Ped proceeds on island

SPUI Pedestrian crossing sequence:

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island
- 4. Ped crosses entry lane; signal controlled
- 5. Ped proceeds on sidewalk on or under bridge
- Ped crosses exit lane; signal controlled
- 7. Ped proceeds on island
- 8. Ped crosses exit lane; stop controlled; drivers yield to peds

SPUI Pedestrian crossing sequence:

- 1. Ped walks next to well defined right-turn lane (RTL)
- 2. Ped crosses RTL at a point with good visibility; drivers yield to peds
- 3. Ped proceeds on island
- 4. Ped crosses entry lane; signal controlled
- 5. Ped proceeds on sidewalk on or under bridge
- Ped crosses exit lane; signal controlled
- 7. Ped proceeds on island
- 8. Ped crosses exit lane; stop controlled; drivers yield to peds
- 9. Ped continues on his merry way

SPUI: Aerial view of ped sequence

SPUI: Aerial view of ped sequence

SPUI: Aerial view of ped sequence

With most SPUIs there is never a phase when pedestrians can cross the urban arterial without conflict

Vehicle phase 1

With most SPUIs there is never a phase when pedestrians can cross the urban arterial without conflict

Vehicle phase 1

Vehicle phase 2

With most SPUIs there is never a phase when pedestrians can cross the urban arterial without conflict

⇒ Solution 1: Two-step crossing (one step during vehicle phase 2 and the other during vehicle phase 3)

Vehicle phase 1

Vehicle phase 2

Vehicle phase 3

With most SPUIs there is never a phase when pedestrians can cross the urban arterial without conflict

- ⇒ Solution 1: Two-step crossing (one step during vehicle phase 2 and the other during vehicle phase 3)
- ⇒ Solution 2: Nearby midblock signalized ped crossing, or nearby signalized intersection with crosswalks

- ⇒ Why is controlling land uses important?
- ⇒ Why do ped crashes occur at freeway interchanges?
- ⇒ What kind of movements should be avoided?
- → How can one mitigate for these problems?

- ⇒ Why is controlling land uses important?
 - Attractors create pedestrian demand
- ⇒ Why do ped crashes occur at freeway interchanges?
- ⇒ What kind of movements should be avoided?
- **⇒** How can one mitigate for these problems?

- ⇒ Why is controlling land uses important?
 - Attractors create pedestrian demand
- ⇒ Why do ped crashes occur at freeway interchanges?
 - Driver expectation of pedestrians is very low
 - They're driving fast
- **⇒** What kind of movements should be avoided?
- **⇒** How can one mitigate for these problems?

- ⇒ Why is controlling land uses important?
 - Attractors create pedestrian demand
- ⇒ Why do ped crashes occur at freeway interchanges?
 - Driver expectation of pedestrians is very low
 - They're driving fast
- **⇒** What kind of movements should be avoided?
 - High-speed, free-flow
- → How can one mitigate for these problems?

- **⇒** Why is controlling land uses important?
 - Attractors create pedestrian demand
- ⇒ Why do ped crashes occur at freeway interchanges?
 - Driver expectation of pedestrians is very low
 - They're driving fast
- **⇒** What kind of movements should be avoided?
 - High-speed, free-flow
- → How can one mitigate for these problems?
 - With slow-speed, right-angle urban design
 - With improved crosswalk placement

Interchange Learning Outcomes

You should now be able to:

- □ Identify how land uses around freeway interchanges create pedestrian trips
- ⇒ Explain how and why pedestrian crashes occur at interchanges (driver expectation of pedestrians is very low; high-speed, free-flow movements)
- ⇒ Select slow-speed, right-angle urban designs

Questions?