The Basics of Bikeway Selection at Intersections and with Parking

Presented by FHWA Office of Safety, VHB, and UNC HSRC

Housekeeping

- **⇒** Submit your questions
- ⇒ Webinar archive: www.pedbikeinfo.org/webinars
- ⇒ Live transcript: <u>www.streamtext.net/player?event=HSRC</u>
- Certificates and professional development hours
- ⇒ Follow-up email later today

Meet the Panel

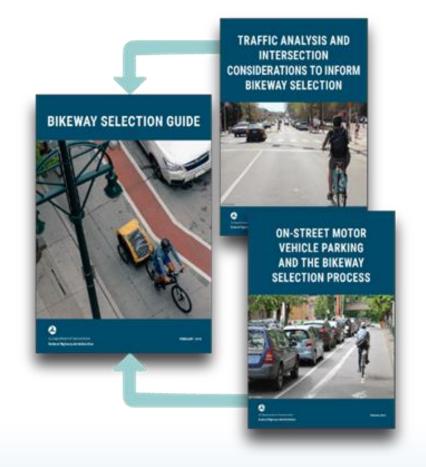
Tamara Redmon
FHWA Office of Safety

Lauren Blackburn VHB

Dan Goodman
Toole Design

Jared Draper Toole Design

Pedestrian and Bicyclist Safety Program Overview


Tamara Redmon, Office of Safety, Federal Highway Administration

Resources Available to Help Improve Pedestrian and Bicyclist Safety

- » Bikeway Selection Guide.
- » Updated Pedestrian and Bicyclist Road Safety Audit Guide and Prompt List.
- » Pedestrian and Bicycle Safety Focus States Efforts.
- » USDOT Action Plan.
- » Safe Transportation for Every Pedestrian (STEP).

Bikeway Selection Guide and Supplemental Resources

Bikeway selection guide and two new supplementary resources. (Source: FHWA)

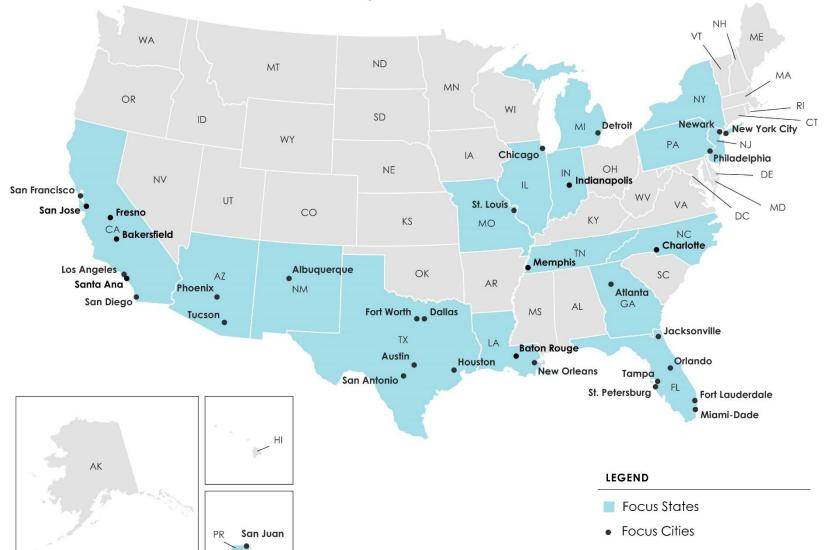
- Helps transportation practitioners consider and make informed decisions about trade-offs relating to the selection of bikeway types.
- » Builds upon FHWA's active support for design flexibility and connected, safe, and comfortable bicycle networks.
- Based on the complementary Literature Review: Resource Guide for Separating Bicyclists from Traffic.
- » NEW! Suplemental Resources on Parking and Intersection Considerations

Pedestrian and Bicyclist Road Safety Audit Guide and Prompt List

PEDESTRIAN AND BICYCLIST ROAD SAFETY AUDIT (RSA) GUIDE AND PROMPT LIST

SEPTEMBER 202

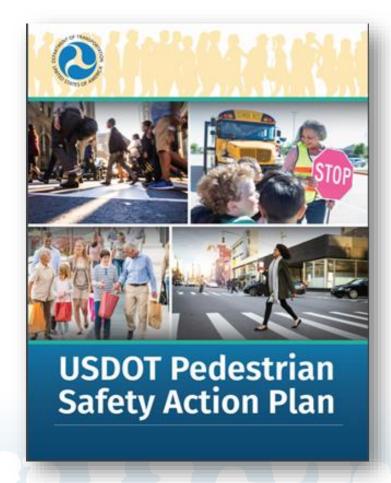
- Intended to support agencies that are interested in conducting pedestrianand bicycle-focused RSAs.
- Includes information on safety risks for both modes, the RSA process, necessary data, and the roles and responsibilities of the RSA Team.
- » Includes prompt lists for pedestrians and bicyclists to use in the field.
- This guide helps practitioners understand pedestrian and bicyclist issues in their jurisdiction and potentially achieve other goals in addition to safety.


Pedestrian and Bicycle Safety Focus States Efforts

FHWA's Safety Office has been providing extra resources to cities and states with the highest pedestrian and bicyclist fatalities and/or fatality rates.

- » Working with the states/cities to assist them with developing pedestrian and bicycle safety action plans.
- » Offering free technical assistance and training on how to design safe facilities and how to develop safety action plans.
- We recently re-evaluated the current list of states and cities and will be rolling out the program to new and continuing states this spring/summer.

Pedestrian-Bicycle Focus Cities and States



Pedestrian and Bicycle Safety Focus States and Cities

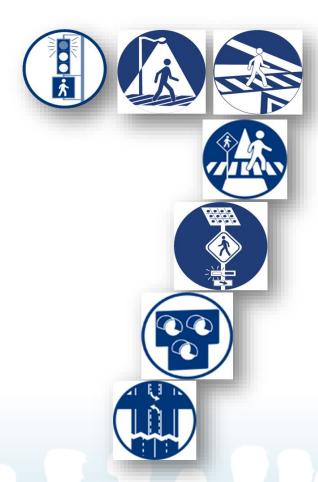
- » Almost 400 training courses delivered.
- » Over 6,000 people trained.
- » Crash data analysis and countermeasure selection.
- » Webinars and peer exchanges.
- » Pedestrian and bike safety action plan development.
- » Executive briefings.

USDOT Pedestrian Safety Action Plan

The Plan identifies what the USDOT intends to accomplish with respect to pedestrian safety in the next 2 years and beyond.

Took into account the themes identified by stakeholders during the July 2020 Pedestrian Safety Summit webinars.

https://highways.dot.gov/sites/fh wa.dot.gov/files/2020-11/FHWA_PedSafety_ActionPlan_ Nov2020.pdf


Safe Transportation for Every Pedestrian

https://safety.fhwa.dot.gov/ped_bike/step/resources/

Federal Highway Administration

The Spectacular Seven STEP Countermeasures

- Rectangular rapid flashing beacons (RRFBs)
- Leading pedestrian intervals (LPIs)
- Crosswalk visibility enhancements
- Raised crosswalks
- Pedestrian crossing/refuge islands
- Pedestrian hybrid beacons (PHBs)
- Road Diets

Administration

Technical Assistance

- » STEP Action Plans.
- » STEP Workshops (1/2 day Full day).
 - » MPOs.
 - » New partners.
 - » State DOTs.
- Scan Tours.
- » Road Safety Assessments (RSAs).
- » STEP UP Resources

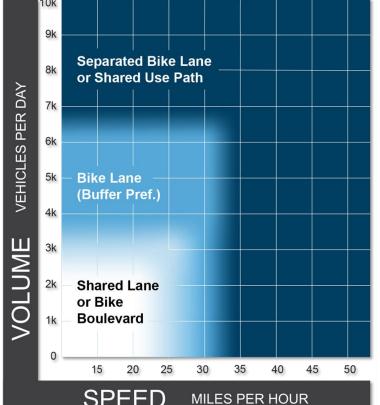
Administration

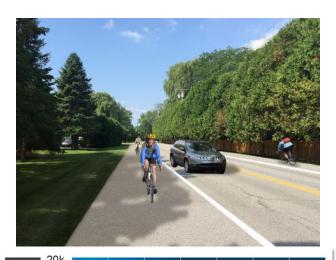
THANK YOU!

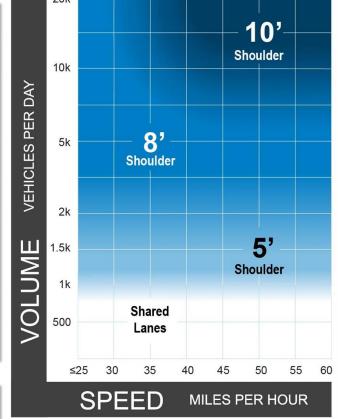
http://safety.fhwa.dot.gov/ped_bike/

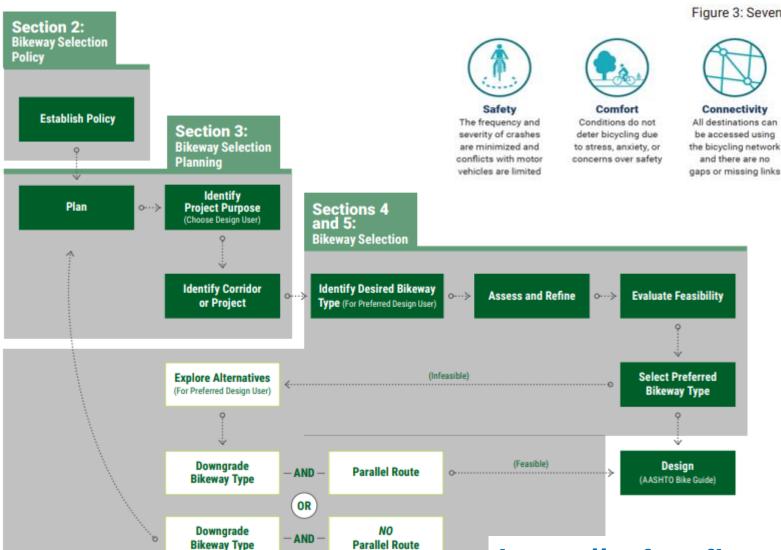
E-mail: tamara.redmon@dot.gov

Order documents:


http://safety.fhwa.dot.gov/ped_bike/ped_bike_order.cfm




BIKEWAY SELECTION GUIDE



FHWA Bikeway Selection Guide

Figure 3: Seven Principles of Bicycle Network Design

All destinations can be accessed using the bicycling network

Directness Bicycling distances and trip times are minimized

Cohesion Distances between parallel and intersecting bike routes are minimized

Attractiveness Routes direct bicyclists through lively areas and personal safety is prioritized

Unbroken Flow Stops, such as long waits at traffic lights are limited and street lighting is consistent

Resources

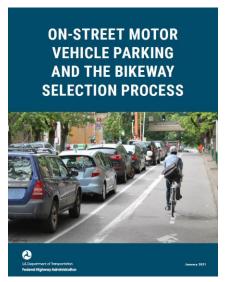
Bikeway Selection Guide (2019)

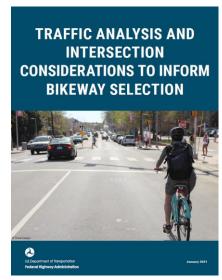
Literature Review: Resource Guide for Separating Bicyclists from Traffic (2019)

https://safety.fhwa.dot.gov/ped_bike/tools_solve/

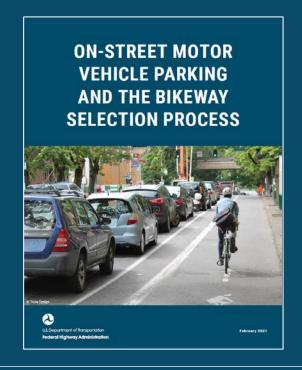
Response to Workshop Feedback

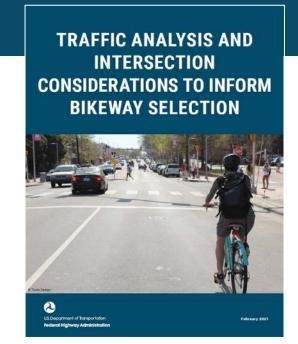
A desire for additional information based upon workshop feedback included:


- Bikeways and on-street parking tradeoffs
- Space allocation for bikeways at intersections with all other modes


Bikeway Selection Supplemental Resources

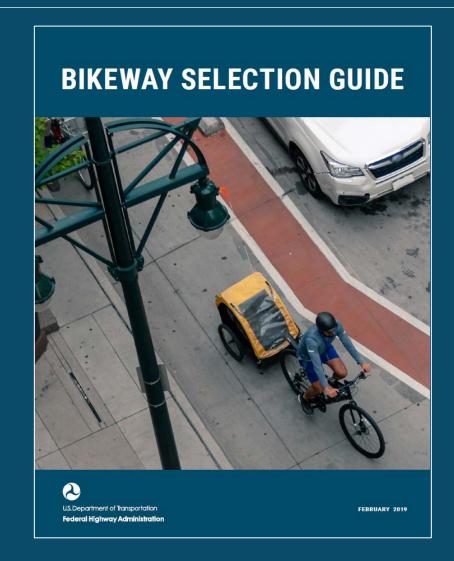
Resources:

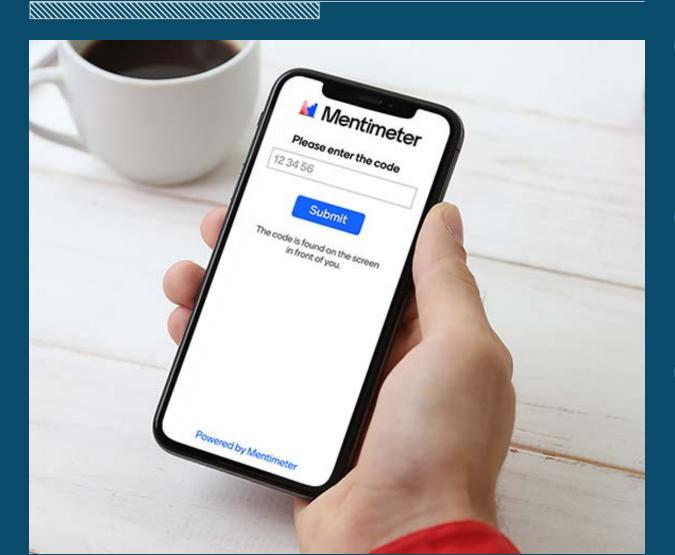

https://safety.fhwa.dot.gov/ped_bike/tools_solve/


Bikeway Selection Guide Supplemental Resources

The Basics of Bikeway Selection at Intersections and with Parking

April 7, 2021




Introduction and Background Context

 Bikeway Selection Guide published in February 2019

- Bikeway selection workshops held throughout the U.S. in 2019-2020
- At workshops, we heard two clear requests for additional information:
 - Bikeway and on-street parking tradeoffs
 - Space allocation for bikeways at intersections

How to Use Mentimeter

Grab your phone or open a new tab on your computer browser

Go to www.menti.com

3 Enter the code

39 97 94 32

Mentimeter

In your community, what are the biggest challenges when attempting to balance on-street parking needs and goals for a connected bike network?

real parking need accommodating deliveries reallocating travel lanes

perceived parking need congestion concerns accessibility limited space

Parking Resource

ON-STREET MOTOR VEHICLE PARKING AND THE BIKEWAY SELECTION PROCESS

On-Street Parking and Bikeway Types

Parking Types:

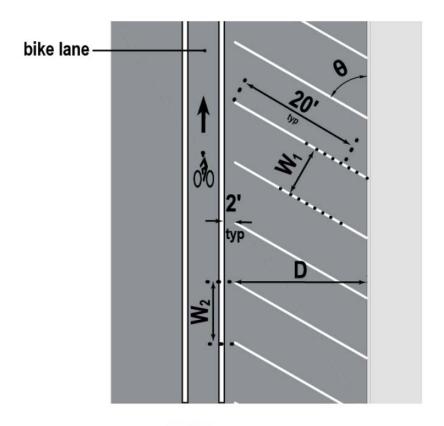
- Reverse Angle-In
- Parallel
- Head-In Angled

Bikeway Types:

- Shared Lane
- Bike Lane
- One-way Separated
- Two-way Separated

Parking Types

- Dimensions
- SafetyConsiderations
- Parking Maneuver Considerations
- Loading, Unloading, and Deliveries



Reverse Angle-In

Parallel

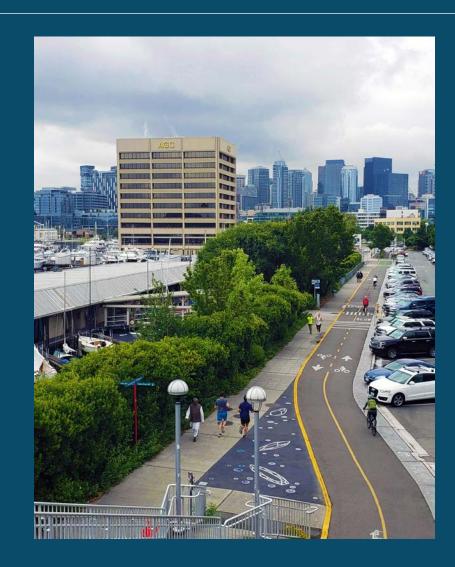
Head-In Angled

Design Criteria

Source: FHWA

Back in Angle Parking				
θ (Degrees)	W ₁ (feet)	W ₂ (feet)	D (feet)	
0°	7–10	20	7–10	
30°	8-9	16-18	16.9-17.8	
45°	8-9	11.3-12.7	19.8-20.5	
60°	8-9	9.2-10.4	21.3-21.8	

 W_1 = stall width


 W_2 = striping width

D = depth to face of curb

 θ = angle

Considerations

- Benefits and costs
- Flexible solutions
- Connecting people with disabilities to the sidewalk
- Options for reallocating space from onstreet parking
- Equity and inclusion

Bikeway Types

- Shared lane
- Bike lane
- One-way separated bike lane
- Two-way separated bike lane

Shared Lane

One-Way Separated Bike Lane

Bike Lane

Two-Way Separated Bike Lane

Dimensions and Considerations

One-Way Separated Bike Lane Widths Based on Existing or Anticipated Volumes

Peak Hour Directional Bicyclist Volume	One-Way Separated Bike Lane Width (ft)			
	Between Vertical Curbs	Adjacent to One Vertical Curb	Between Sloped Curb or at Sidewalk Level	
<150	6.5 - 8.5	6 - 8	5.5 - 7.5	
150-750	8.5 - 10	8 - 9.5	7.5 - 9	
>750	≥10	≥9.5	≥9	
Constrained Condition*	4.5	4	3.5	

^{*}Peak Hour Directional Bicyclist Volume not applicable

Two-Way Separated Bike Lane Widths Based on Existing or Anticipated Volumes

Peak Hour Directional Bicyclist Volume	Preferable Two-Way Bike Lane Width (ft)			
	Between Vertical Curbs	Adjacent to One Vertical Curb	Between Sloped Curb or at Sidewalk Level	
<150	10 - 12	9.5 - 11.5	9 - 11	
150-350	12 - 16	11.5 - 15.5	11 - 15	
>350	≥16	≥15.5	≥15	
Constrained Condition*	8.5	8	7.5	

^{*}Peak Hour Directional Bicyclist Volume not applicable

Options

- Enhancing bicyclist comfort and safety
- Reallocating space from onstreet parking
 - Intermittent reductions
 - Converting type
 - Reallocating capacity
 - Parking management strategies
 - Hybrid

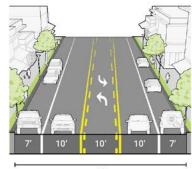
Bikeway	Spatial Impact	Additional Options to Enhance Experience
Shared Lanes	None	 Traffic calming to manage speed Traffic diversion to lower volumes Shared lane markings
Conventional Bike Lanes	10-12 feet	Green color in bike lanes
Buffered Bike Lanes	12 - 16+ feet of space	Green color in bike lanes
One-Way Separated Bike Lanes	12 - 16+ feet of space	 Vertical barriers Green color in bike lanes Protected intersections Phase separation at signals
Two-Way Separated Bike Lane (one side of street)	10 feet (constrained) 12+ feet	 Vertical barriers Green color in bike lanes Protected intersections Phase separation at signals

Bikeway Assessment Strategies

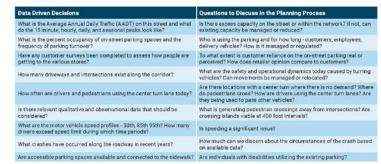
- 1. Assessing tradeoffs at the crosssection level
- 2. Adjusting on-street motor vehicle parking to better accomplish complete streets goals
- 3. Strategically reducing parking to improve safety

Assessing Tradeoffs at the Cross-section Level

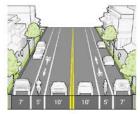
- Data driven decisions
- Questions to discuss in the planning process
- Trade-off considerations

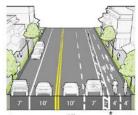

Bikeway Assessment Strategies

The following pages describe strategies for using these factors and decision points when assessing options and trade-offs. The first strategy focuses on decision points and considerations at the cross-section level. The second strategy discusses ways that on-street parking can be used proactively to accomplish other complete streets goals. The third strategy focuses on opportunities to implement small adjustments to existing on-street parking, while still generally maintaining parking along a condition


Strategy 1: Assessing Tradeoffs at the Cross-section Level

This Main Street, with locally-owned storefront retail on both sides, generates significant pedestrian activity and has high loading, delivery, and parking demand. The center-turn lane services intermittent driveways. Unsafe motor vehicle passing movements occur occasionally in the continuous center-turn lane. Pedestrian crossing demand is high at intersections and mid-block locations due to the block length, mid-block bus stops, retail distribution, and on-street parking. Bicyclists are concerned about their safety and avoid this street. Despite the presence of off-street parking facilities in the vicinity, the public perceives a parking shortage and many believe that the on-street parking is critical to the success of the retail. The Main Street is controlled by the State Department of Transportation, but is operated and maintained by the local transportation agency. Note that in this existing condition and in the options presented at right, buses and freight might need


The table below outlines key data-driven decisions and questions to be discussed as part of the planning process.


44' Source: FHWA

on-street parking on both sides, and add bike lanes in both directions.

Implement a road diet, or on-street parking on both sides, and add a two-way separated bike lane on one-side.

Implement a road diet, or space reallocation, remove on-street parking on one side, and add a oneway separated bike lane on both sides.

Trade-Off Considerations

- 1. Eliminating the center-turn lane is likely feasible if there are fewer than 100 vehicles per hour using it. A gap analysis can be conducted and access control/ management can be considered to consolidate driveways and encourage left turns at intersections. It may be possible to replace the continuous center-turn lane with dedicated left-turn pockets at select locations.
- 2. The elimination of the center-turn lane could lead to some amount of additional concestion but this may only be for a short time in the AM and PM neak and it could improve safety for everyone by slowing speeds.
- Providing bike lanes could impact the shillty to provide other beneficial roadway design features such as

pedestrian crossing islands at midblock locations and curb extensions

- 4. Driveways and intersections will cause drivers to turn across the path of bicyclists in the hike lanes. It may be necessary to eliminate on street parking spaces near driveways and intersections to ensure adequate visibility.
- 5. The on-street parking may contribute to a dooring concern for bicyclists in the bike lanes, especially if there is high parking turnover.
- On-street parking is maintained on both sides of the street at the expense of a higher quality bikeway.
- 7. A bike lane may not meet the needs of all ages and abilities so this could remain a this change.

Trade-Off Considerations (Applies: 1, 2, 3, 4)

- 8. Measures should be taken to ensure that drivers don't attempt to enter the separated bike lane.
- 9. People with disabilities must be able to safety and conveniently cross the separated bike lane to access the onstreet parking and the sidewalk
- 10. On-street parking is maintained on both sides and a high-quality bikeway is
- 11. The two-way operation of the separated bike lane in this option may present increased risk as compared to the oneway separated bike lanes in Option C
- * Constrained roadway, not preferred dimension
- 12. Special planning and design attention will be needed to ensure adequate transitions at termini and safe intersection operations given that bicyclists will be traveling on the same side but in an opposite direction as motor vehicles. Provisions need to be made for bicyclists to turn at intersections fright way cyclists have hard time turning left, contraflow cyclists have hard time turning right).
- 13. If there are destinations on both sides of the street, bicyclists may not be able to conveniently access everything.
- 14. Roadway design will contribute to a low stress bike network by providing a bikeway that is physically separated from motor vehicle traffic by vertical elements and a horizontal buffer.

18. Eliminating on-street parking removes a

physical barrier (when there are parked

cars) between bicyclists and the travel

driveways, intersections, and transitions

Trade-Off Considerations (Applies: 1, 2, 3, 4, 9, 14)

- 15. Drivers may execute U-turns in order to access on-street parking on the other side of the street, which could create notential conflicts with all road users.
- 16. Parking occupancy, frequency of turnover, and customer surveys may indicate that on-street parking on one side can be eliminated
- 17. A high-quality bikeway is provided at the expense of some amount of customer
- Constrained roadway, not preferred dimension
- more intuitive and straightforward. 20. Separated bike lanes on both sides will maximize bicyclist access to destinations along the entire corridor.

19. One-way bike operations will make

Adjusting On-Street Motor Vehicle Parking to Better Accomplish Complete Streets Goals

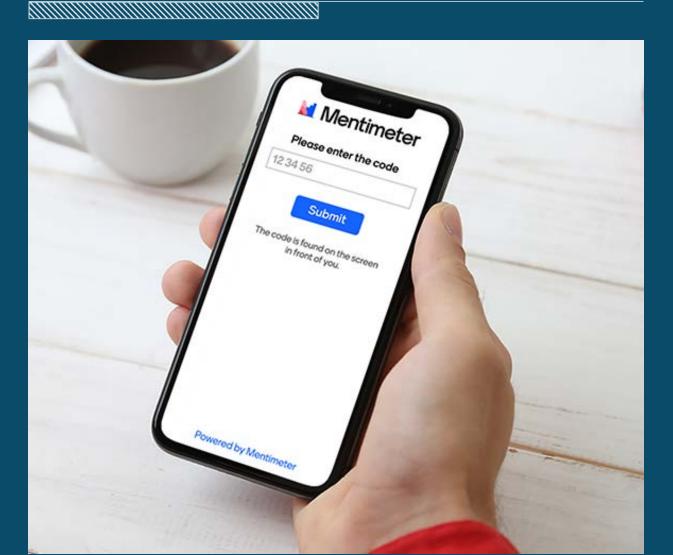
- Swap parallel parking with bike lane to provide a Separated Bike Lane
- Creating space for bike and micromobility parking
- Organizing street elements
- Parklets and outside seating

Adjusting On-Street Motor Vehicle Parking to Better Accomplish Complete Streets Goals

- Providing accessible parking and improving pick-up and drop-off conditions
- Providing better bus stop accommodations
- Commercial loading and shared mobility pick-up and drop-off

Strategically Reducing Parking to Improve Safety

- Daylighting Mid-Block
 Pedestrian Crossings
- Increasing Visibility of Bicyclists in Separated Bike Lanes
- Improved Intersection Design


Mentimeter

In your community, what are the biggest challenges when attempting to balance on-street parking needs and goals for a connected bike network?

real parking need accessibility accommodating deliveries reallocating travel lanes

perceived parking need congestion concerns limited space

How to Use Mentimeter

Grab your phone or open a new tab on your computer browser

Go to www.menti.com

3 Enter the code

39 97 94 32

Mentimeter

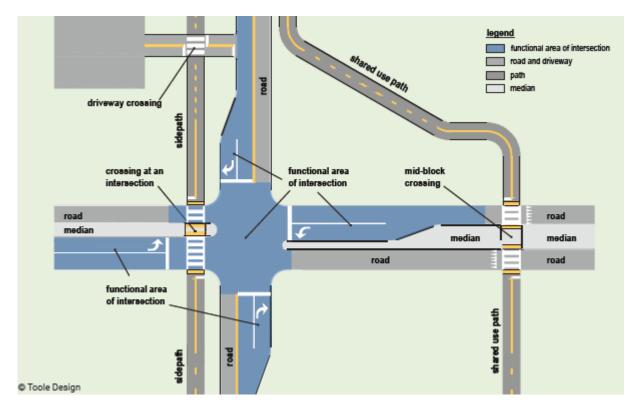
In your community, what makes intersections one of the major barriers to a fully connected bike network?

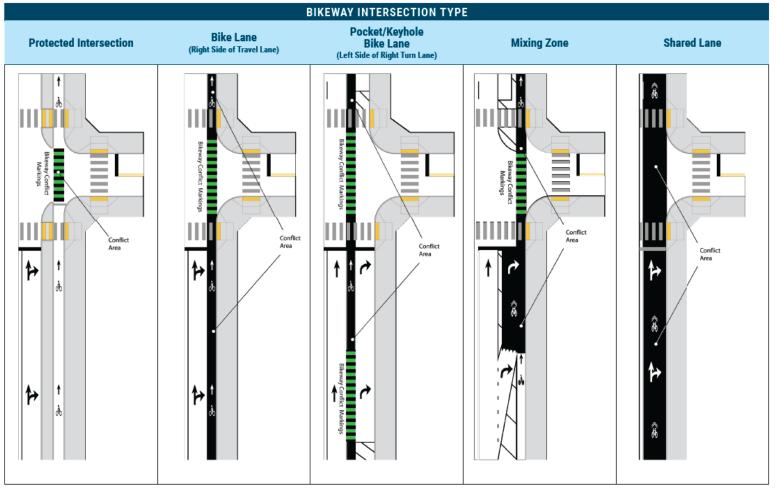
exposure to cars
turn lanes motor vehicle speed
bike facilities drop

signalization problems

unclear expectations motor vehicle volume wide crossings

Intersection Resource


TRAFFIC ANALYSIS AND INTERSECTION CONSIDERATIONS TO INFORM BIKEWAY SELECTION


Performance Metrics

- Safety
- Accessibility for pedestrians with disabilities
- Pedestrian and bike quality of service metrics
- Traffic analysis
- Travel time

Functional Area of an Intersection

Spatial Needs by Bikeway Intersection Type

Safety and Equity Focused Design Principles

- Bikeway continuity
- Minimize exposure to conflicts
- Reduce speeds at conflict points
- Clearly communicate right-ofway
- Provide adequate sight distances

Sustainable Safety Considerations for Bikeway Intersection Types

	BIKEWAY INTERSECTION TYPE								
	Protected Intersection	Bike Lane (Right Side of Travel Lane)	Pocket/Keyhole Bike Lane (Left Side of Right Turn Lane)	Mixing Zone	Shared Lane				
Spatial Considerations									
Bikeway Width	One-way separated bike lane: 6.5'-8.5' Two-way separated bike lane: 10'-12' Shared Use Path: 10'-14'	Bike Lane: 4'-7'	Bike Lane: 4'-7'	One-way separated bike lane approach: 6.5'-8.5' Bike Lane approach: 4'-7'	No designated facility				
Street Buffer Width	6'-16'	2'-4' (applicable for buffered bike lane)	2'-4' (applicable for buffered bike lanes)	2'-6' (applicable for approach to the mixing zone for separated bike lanes or buffered bike lanes)	N/A				
Length of Approach Exposure	None	None*	Sum of pocket/keyhole bike lane and merge area*	Constrained to merge Area	Unconstrained				
Functionality (Comfort) - Roads can be categorized by their function									
Perceived comfort based on separation from traffic and constrained entry/conflict point	High	High to Moderate	Moderate to Low	Moderate to Low	Low				
Homogeneity - Roads with vehicles of balanced speeds, directions, and masses are the safest									
Intersection approach exposure to potential motorist conflict	Eliminated	Moderate to High	Moderate to High	Moderate to High	High				
Conflict exposure (turning and angle) result generally based upon vehicle speed/volume at intersection	Low to Moderate	Moderate to High	Moderate to High	High	High				

U.S. Department of Transportation
Federal Highway Administration

^{*} Exposure for users in bike lanes and buffered bike lanes—defined by the lack of vertical separation—along intersection approach is dependent upon vehicle encroachment.

Sustainable Safety Considerations for Bikeway Intersection Types

	BIKEWAY INTERSECTION TYPE						
	Protected Intersection	Bike Lane (Right Side of Travel Lane)	Pocket/Keyhole Bike Lane (Left Side of Right Turn Lane)	Mixing Zone	Shared Lane		
Predictability (Right-of-Wa	ay) - Roads should be intuit	ive					
Ability to limit or constrain conflicts along bikeway facility	High	Moderate	Moderate to Low	Moderate to Low	Low		
Right-of-way priority between motorists and bicyclists is clarified through the intersection	High**	High to Moderate	Moderate	Low	Low		
Forgiveness (Safety) - Infr	astructure can be designed	to accommodate human er	ror				
Relies upon highly aware motorist and bicyclist behavior to avoid crashes	No	Yes	Yes	Yes	Yes		
Bicyclists operate in separated space from vehicles	Yes	Yes, however vehicles can encroach into the facility at any location	Yes, however vehicles can encroach into the facility at any location	Yes, prior to mixing zone; however, vehicles may encroach into facility if it is not separated	No		
Awareness (Visibility) - Av	vareness improves safety fo	or all users					
Level of motorists/bicyclists scanning required to identify bicyclists, and/or motorists approaching from behind or operating beside them	Low to Moderate	High	High	High	High		

- Volume Projections
- Future Year
- Growth Rates
- Trip Generation
- Level of Service
- Time Period and Analysis Period
- Network Utilization/Peak Spreading
- Signal Timing Assumptions

 Consider the impacts of "conservative" approach (i.e., higher travel volumes:

- Volume Projections
- Future Year
- Growth Rates
- Trip Generation
- Level of Service
- Time Period and Analysis Period
- Network Utilization/Peak Spreading
- Signal Timing Assumptions

- 5-30 year future condition
- Presumes existing travel behavior will remain the same:
 - Self-fulfilling prophecy
 - Increased maintenance
 - Reduce safety performance until future condition is realized

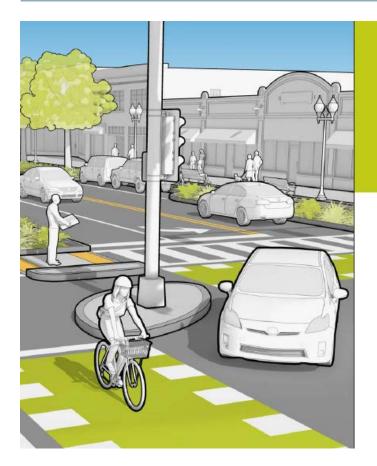
- Volume Projections
- Future Year
- Growth Rates
- Trip Generation
- Level of Service
- Time Period and Analysis Period
- Network Utilization/Peak Spreading
- Signal Timing Assumptions

- LOS is part of the bigger picture
- Evaluate levels that are "acceptable"

ANALYSIS TIPS:

- For motor vehicle queues, evaluate the 50th-percentile queue in addition to the 95th percentile queue.
- When interpreting results, practitioners should consider whether a LOS F (or other conventional standard) may be acceptable during certain peak hours if other project goals are achieved.

- Volume Projections
- Future Year
- Growth Rates
- Trip Generation
- Level of Service
- Time Period and Analysis Period
- Network Utilization/Peak Spreading
- Signal Timing Assumptions


Time Period and Analysis Period

KEY TAKEAWAY People use streets at all hours of the day and night and the use of street varies throughout the entire day; streets should be designed for all day use, not just a single peak hour (or even peak 15- minutes).

ANALYSIS TIPS:

- Use a peak hour factor based on the entire intersection, not specific movements.
- Collect data for a 2-3-hour peak period at a minimum or, ideally, a 24-hour period to understand the demands of the street throughout the day. Consider averaging 2-3-hour peak to analyze an average peak hour.

Intersection Resources

4

INTERSECTION DESIGN

This chapter provides key principles that should be used to develop and evaluate design approaches and treatments that will result in intersections that support all ages and abilities of bicyclists. This chapter illustrates the application of these principles for common intersection configurations which include protected intersections, roundabouts, mixing zones and driveway crossings. Intersection design also requires consideration of parking, loading and bus stops (see Chapter 5), and signal operations (see Chapter 6).

Don't Give Up at the Intersection

Designing All Ages and Abilities Bicycle Crossings

MassDOT, Separated Bike Lane Planning & Design Guide: Chapter 4, Intersection Design

NACTO: Don 't Give Up at the Intersection

Mentimeter

In your community, what makes intersections one of the major barriers to a fully connected bike network?

exposure to cars
turn lanes motor vehicle speed
bike facilities drop

signalization problems

unclear expectations motor vehicle volume wide crossings

Can you discuss the extent to which design is addressed as part of these resources?

How does the bikeway selection process (and outcomes) intersect with equity?

What kind of responses should be expected when discussing bikeways, parking, and intersections?

How do you discuss tradeoffs?

In what ways does COVID-19 fit into this conversation on bikeway selection?

Discussion

- ⇒ Send us your questions
- ⇒ Follow up with us:
 - ⇒ Tamara Redmon <u>tamara.redmon@dot.gov</u>
 - ⇒ Lauren Blackburn lblackburn@vhb.com
 - ⇒ Dan Goodman <u>dgoodman@tooledesign.com</u>
 - ⇒ Jared Draper jdraper@tooledesign.com
 - ⇒ General Inquiries <u>pbic@pedbikeinfo.org</u>
- ⇒ Archive at <u>www.pedbikeinfo.org/webinars</u>