

Planning Multimodal Networks in a Connected and Automated Future

Stefanie Brodie, PhD Toole Design
Katie Heuser Toole Design
Darren Buck Federal Highway Administration

Housekeeping

- **⇒** Submit your questions
- ⇒ Webinar archive: www.pedbikeinfo.org/webinars
- ⇒ Live transcript: https://link.ai.media/session?plink=HSRC
- Certificates and professional development hours
- ⇒ Follow-up email later today
- Review previous episodes and sign up for upcoming sessions

Today's Panel

Stefanie Brodie, PhD
Toole Design

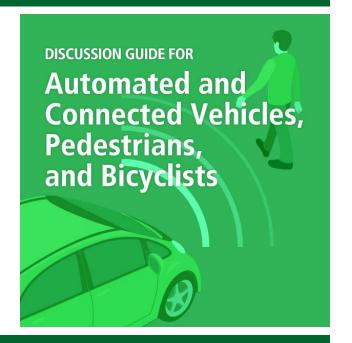
Katie Heuser Toole Design

Darren Buck Federal Highway Administration

PBIC Resources on Automated and Connected Vehicles

Topic Page: Automated and Connected Vehicles

repository for research, reports and guidance related to biking/walking and CAVs


https://www.pedbikeinfo.org/topics/automatedvehicles.cfm

PBIC Resources on Automated and Connected Vehicles

Discussion Guide for Automated & Connected Vehicles, Pedestrians, and Bicyclists

Presents ten key challenges at the center of discussions around CAVs and implications for nonmotorized road users

Establishes key definitions and lays out potential needs for both policy and research

https://www.pedbikeinfo.org/resources/resources_details.cfm?id=5082

Planning Multimodal Networks in a Connected and Automated Future

July 12, 2021

Katie Heuser | Planner II
Stefanie Brodie, PhD | Research Practice Lead

Agenda

- What are we talking about?
- What are we doing?
- What have we found?
- What is next?

What are we talking about?

Definitions

0

No Automation

Zero autonomy; the driver performs all driving tasks.

1

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. 2

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

Conditional Automation

3

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Automated Vehicles (AV)

Autonomous Vehicles

Source: US DOT

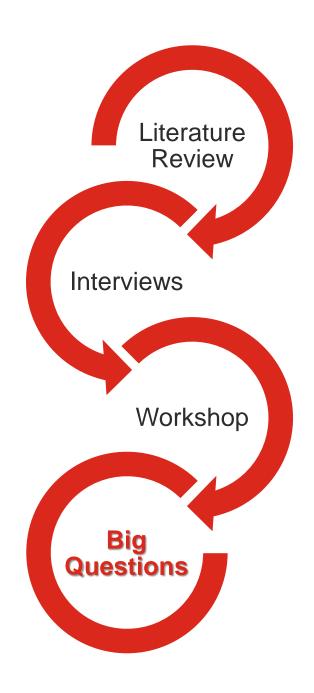
Connected Vehicles (CV)

Source: US DOT

CV/AV Technology

- Detection: monitoring the external environment of the vehicle, including roadway infrastructure and other road users
- Prediction: understanding location, speed, and trajectory of other road users and responding accordingly
- Communication: exchanging information on the vehicle's intentions with other road users

Multimodal Networks



What are we doing?

Project Overview

Project Overview

- Examine how planning and program development for pedestrian and bicycle networks might change with CV/AV technologies
- Explore how policy and operations can harness CV/AV technologies for the good of active transportation users

Literature Review

Goals:

Document the current state of practice for CV/AV technology and active transportation

Identify gaps and prominent issues

Outputs:

Synthesized current CV/AV technology

Developed and categorized uncertainties

PLANNING MULTIMODAL **NETWORKS IN A** CONNECTED AND **AUTOMATED FUTURE**

Interviews

10 interviewees

- Cities
- States
- Transit agencies
- Technology providers

- Original equipment manufacturers (OEMs)
- Third-party companies
- Research institutions

Topics

Technology

Policy

Equity

Land use Context

Transit

Interviews

Goals:

Validate findings from the literature review

Understand how different actors are responding to uncertainties

Output:

Identified 5 scenarios based on uncertainties

Workshop

Goal:

Discuss scenarios with practitioners, researchers, and experts

Output:

Policy and regulatory considerations for FHWA to support state and local regulation of CV/AVs

What have we found?

Uncertainties and the Big Questions

Market Penetration

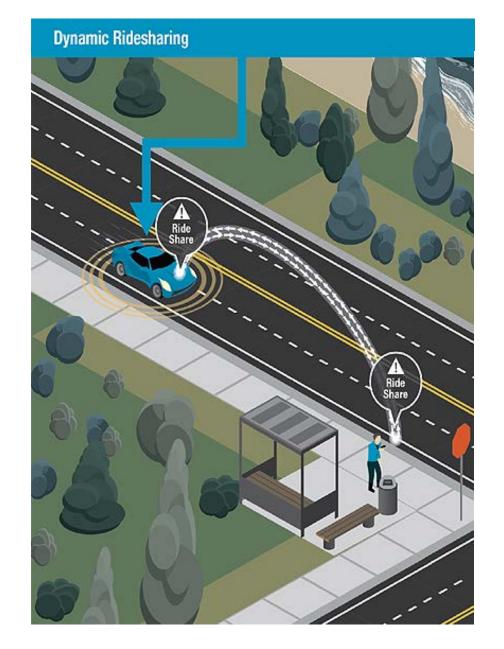
When and where will CV/AV technology be commonly deployed?

How will the public receive CV/AV technology?

Source: US DOT

Communication and Connection

How will CV/AVs communicate with other road users?


How will CV/AVs be connected to pedestrians, bicyclists, infrastructure, and vehicles outside of their fleet?

Should cyclists and pedestrians be required to be connected?

Vehicle Occupancy

Will the future fleet be dominated by autonomous vehicles that are shared or privately-owned?

Source: US DOT

Programming and Decision Making

How will CV/AVs make decisions?

How will social and cultural norms influence programming?

How will technology producers address algorithmic bias?

Interventions and Recommendations from the Interviews

- Testing
- Technology for interacting with vulnerable road users
- Standardize communication technology
- Cybersecurity

What is next?

Workshop Scenarios

	Market Penetration	Communication and Connection	Vehicle Occupancy	Programming and Decision Making
Limited connected technology				
Pedestrian and bicycle communication via cellphones				
Various levels of automation				
Extended pilot and testing period in diverse environments				
Pricing the curbside				

Next Steps

- Workshops
 - July 2021
- Summary report
 - Early Fall 2021

Source: US DOT

Thank You!

- ⇒ Keep an eye out for follow-up email later today
- ⇒ Follow up with us:
 - ⇒ Stephanie Brodie <u>sbrodie@tooledesign.com</u>
 - ⇒ Katie Heuser <u>kheuser@tooledesign.com</u>
 - ⇒ Darren Buck <u>darren.buck@dot.gov</u>
 - ⇒ General Inquiries <u>pbic@pedbikeinfo.org</u>
- ⇒ Archive at <u>www.pedbikeinfo.org/webinars</u>