Determining the Safety Impacts of Bicycling and Walking Investments

Daniel Carter Raghavan Srinivasan Krista Nordback

UNC Highway Safety Research Center

I PBIC Webinar

December 11, 2017

pedbikeinfo.org

Housekeeping

Problems with audio? Dial into the phone line instead of using "mic & speakers"

⇒ Webinar issues?

Re-Load the webpage and log back into the webinar. Or send note of an issue through the Question box.

⇒ Questions?

Submit your questions at any time in the Questions box.

Archive and Certificates

- Archive posted at www.pedbikeinfo.org/webinars
- ⇒ Copy of presentations
- ⇒ Recording (within 1-2 days)
- ⇒ Links to resources

- Follow-up email will include...
- ⇒ Link to certificate of attendance
- ⇒ Information about webinar archive

pedbikeinfo.org

PBIC Webinars and News

Center

Home

About

Photos

Likes

Videos

Posts

Events

Create a Pag

- ⇒ Find PBIC webinars and webinar archives pedbikeinfo.org/webinars
- ⇒ Follow us for the latest PBIC News facebook.com/pedbikeinfo twitter.com/pedbikeinfo
 - ⇒ Join us on Twitter using **#PBICWebinar**
- ⇒ Sign up for our mailing list pedbikeinfo.org/signup

Twitter #VZChat

Government Organization

pedbikeinfo.org

😏 @pedbikeinfo

Upcoming Webinar

Visit www.pedbikeinfo.org to learn more and register

Safety Performance Measures for Bicyclists and Pedestrians

December 14, 2:00 – 3:00 PM Eastern

Amy Schick National Highway Traffic Safety Administration

Dave Kopacz Federal Highway Administration

pedbikeinfo.org f 😒 @pedbikeinfo

Determining the Safety Impacts of Bicycling and Walking Investments

Daniel Carter, P.E. Raghavan Srinivasan, Ph.D. Krista Nordback, P.E., Ph.D.

www.hsrc.unc.edu

Monday, December 11, 2017

WHAT WE'LL COVER....

Safety Effectiveness of Countermeasures

2

Evaluating Safety Countermeasures

Where to Find and How to Use Crash Modification Factors

4

3

Challenges for Bicycle and Pedestrian CMF Development

Challenge for Transportation Agencies:

Make the best decisions about safety improvements given a range of options and limited resources.

BENEFITS AND COSTS

When faced with many potential countermeasures, how do we determine the best "bang for the buck"?

RESEARCH

BENEFITS AND COSTS

When faced with many potential countermeasures, how do we determine the best "bang for the buck"?

Countermeasure Benefits

- Safety (crash reduction)
- Mobility
- Congestion reduction
- Others?

Countermeasure Costs

RESEARCH CE

- Installation
- Maintenance
- Operation
- Others?

COUNTERMEASURE BENEFITS

 Use CMFs to estimate if available

CHANGES IN CRASH SEVERITY

- Traffic Signals
- Red Light Photo Enforcement

OTHER BENEFITS INDIRECTLY RELATED TO SAFETY

 e.g., Improved mobility, comfort

COUNTERMEASURE BENEFITS: Crash Modification Factors

Crash modification factor (CMF) is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site.

CMF > 1	CMF < 1	
Indicates an expected increase in crashes	Indicates an expected decrease in crashes	

COUNTERMEASURE BENEFITS: Crash Modification Factors

Crash modification factor (CMF) is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site.

COUNTERMEASURE BENEFITS: Crash Modification Factors

Crash modification factor (CMF) is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site.

Ongoing and Recent Studies

- Leading Pedestrian Interval
 - Before-after study
 - Treatment sites in Chicago, New York, Charlotte

- Protected Left Turn Phasing
 - Before-after study
 - Treatment sites in Chicago, New York, Toronto

Recently Completed NCHRP CMF Study (Report 841)

WHERE DO CMFs COME FROM?

CMF Development is Based on Safety Evaluation

Evaluation is essential to establish countermeasure effectiveness

Funds should be set aside for good evaluation (more on that later)

Why should we evaluate our projects?

CMF Development is Based on Safety Evaluation

Evaluation is essential to establish countermeasure effectiveness

Funds should be set aside for good evaluation

Why should we evaluate our projects?

Prove effectiveness

Contribute new scientific knowledge

Demonstrate program value to decision makers

Improve decisions and optimize future investment

Example Collision Diagram Before Countermeasure Installation

Example Collision Diagram After Countermeasure Installation

Crashes Decreased

...but was the decrease due to the countermeasure installation?

Safety Effectiveness Evaluation Basics

- Goal Measure true effect of a countermeasure
- We want to be sure that the observed change is due to the countermeasure alone
- What other factors could cause the change?

Safety Effectiveness Evaluation Basics

- Goal Measure true effect of a countermeasure
- We want to be sure that the observed change is due to the countermeasure alone
- What other factors could cause the change?
 - Other "treatments" at the same time (e.g., speed enforcement at the same time as road diet conversion)
 - Changes in traffic volume (AADT, ped/bike volumes)
 - Regression to the mean
 - Underlying trends in crashes (e.g., economy-related changes)
 - Others?
- How do we account and control for these other factors?

REGRESSION TO THE MEAN

Crashes are random events that naturally fluctuate over time.

Regression to the mean (RTM) refers to the phenomenon of 'averaging out' in statistics

May lead us to confuse random change with real change

Crashes are artificially high during the before period and would have been reduced even without any improvement to the site

REGRESSION TO THE MEAN

Observed Crash Frequency

TWO BASIC STUDY DESIGNS

Before/After Studies

Cross-Sectional Studies

TWO BASIC STUDY DESIGNS

Choice of method is affected by:

Simple Before/After

Does not account for certain biases

Before/After Studies

 Examines crash data before and after the treatment is installed

Before/After with Reference or Comparison Groups

Represents a <u>group</u> of methods that account for changes in volumes and other factors

SIMPLE BEFORE-AFTER

SIMPLE BEFORE-AFTER

BEFORE-AFTER WITH REFERENCE/COMPARISON GROUP

BEFORE-AFTER WITH REFERENCE/COMPARISON GROUP

Real difference in crash counts

Evaluation Result Example (hypothetical)

Expected crashes without treatment = 96.2 crashes

TWO BASIC STUDY DESIGNS

Before/After Studies

Cross-Sectional Studies

CROSS-SECTIONAL STUDIES

Cross-Sectional Studies

- Compare crash data for sites with and without treatment over same time period
- Why do a cross-sectional study?
 - Installation dates unknown
 - Volumes and crash counts in before period unknown

CROSS-SECTIONAL STUDIES

2

Cross-Sectional Studies

 Work underway to improve methods for cross-sectional studies by selecting sites using Propensity Score Matching

Where to Find (and how to use) Crash Modification Factors?

COUNTERMEASURE SOURCES: Tools and Resources for CMFs

Skip to main content | Site Map | Notice | Sign Up for our e-Newsletter | Home

About the CMF Clearinghouse Using CMFs Developing CMFs Additional Resources

A crash modification factor (CMF) is used to compute the expected number of crashes after implementing a <u>countermeasure</u> on a road or intersection. The Crash Modification Factors Clearinghouse provides a searchable online database of CMFs along with guidance and resources on <u>using CMFs</u> in road safety practice. It also provides guidance to researchers on best practices for <u>developing</u> high quality CMFs.

Recently Added CMFs

Provide a raised	Install w-beam	Ins
median	guardrail and concrete	COL
CMF: 0.49	barrier	sys
CREV 51	CMF: 0.92	inte
	CRF: 8	CM
Crash type: Other		Ciri
Crash severity: All	crash type: Run off road,Other	CR

Install intersection conflict warning systems (ICWS) for two-lane at two-lane intersections

CMF: 0.7

RF: 30

Skip to main content | Site Map | Notice | Sign Up for our e-Newsletter | Home

About the CMF Clearinghouse | Using CMFs | Developing CMFs | Additional Resources

A crash modification factor (CMF) is used to compute the expected number of crashes after implementing a countermeasure on a road or intersection. The Crash Modification Factors Clearinghouse provides a searchable online database of CMFs along with guidance and resources on using CMFs in road safety practice. It also provides guidance to researchers on best practices for developing high quality CMFs.

Recently Added CMFs

Provide a raised median	Install w-beam guardrail and concrete	Install inter conflict war
CMF: 0.49	barrier	systems (IC two-lane at
CRF: 51	CMF: 0.92	intersection
Crash type: Other	CRF: 8	CMF: 0.7
Crash severity: All	Crash type: Run off road,Other	CRF: 30

Countermeasure: Install a pedestrian hybrid beacon (PHB or HAWK)

	Compare	СМ	F CI	RF(%)	Qua	ality	Crash Type	Crash Severity	Area 7 Type	Reference	Comments
Mo	re	0.71	12	29	min	inir#	All	All	Urban and suburban	Fitzpatrick, K., and Park, E.S., 2010	The authors of this study [<i>read more</i>]
1 N	Fo >	0.453	54.7	***	i ric	Vehicle/	pedestria	n All	Urban and suburban	Zegeer et al., 2017	Methodology used was a combination [<i>read more</i>]
		0.849	15	**	X RR	AI	I	K,A,B,C	Urban and suburban	Fitzpatrick, K., and Park, E.S., 2010	The authors of this study [<i>read more</i>]
		0.309	69	***		Vehicle/J	pedestria	n All	Urban and suburban	Fitzpatrick, K., and Park, E.S., 2010	The authors of this study [<i>read more</i>]
			*NOTE:	You can c	ompare	Compare CMFs acros	Res	et Compar easures, sub	e categories, and ca	tegories.	

Applicability				
Crash Type:	Vehicle/pedestrian			
Crash Severity:	All			
Roadway Types:	Minor Arterial			
Number of Lanes:	2 to 8			
Development Details				
Date Range of Data Used:	2004 to 2013			
Municipality:				
State:	AZ, FL, IL, MA, NY, NC, OR, VA, WI			
Country:	USA			
Type of Methodology Used:	Regression cross-section			
Sample Size (crashes):	350 crashes			
Sample Size (site-years):	3495 site-years			

Other Features of the CMF Clearinghouse

CMF	Skip to main content Site Map N	otice Sign Up for our e-Newsletter Home
CRASH MODIFICATION FACTORS CLEARINGHOUSE	About the CME Cleaninghouse Using CMFs Develo	oping CMFs Additional Resources
	CMF Clearinghouse User Guide	
Search for: enter search term(s)	CMF Clearinghouse Brochure CMF Update (e-Newsletter)	
in Countermeasure Name	CMF Clearinghouse Webinars FAQs	on of
Need Help? Search CMFs	Glossary Star Quality Rating	1 2 3 4 5
	Relationship to the Highway Safety Manual In the News	

A crash modification factor (CMF) is used to compute the expected number of crashes **Recently Added CMFs** after implementing a countermeasure on a road or intersection. The Crash Modification Factors Clearinghouse provides a searchable

online database of CMFs along with guidance

and resources on using CMFs in road safety

researchers on best practices for developing

practice. It also provides guidance to

high quality CMFs.

Flovide a raised	Install Dicycle laries	Conven
median	CMF: 0.77	Divergi
CMF: 0.49	CRE: 23	Interch
CRF: 51		Double
Crash type: Other	Crash type: Vehicle/bicycle	Diamon
		CMF: 0.
Crash severity: All	Crash severity: All	

) Diamond d (DCD)

59

CRF: 41

Other Features of the CMF Clearinghouse

- How to Develop and Use CMFs
- How to Develop and Use SPFs
- Resources for Cost Benefit Analysis
- Resources for Behavioral Countermeasures
- Others

Want to Learn More?

The Right Fit: Finding and Applying the Right CMF for the Job

Dec 12, 2:00 – 3:30 PM Eastern

Sophia Azam New Jersey DOT

Daniel Carter UNC Highway Safety Research Center

http://www.cmfclearinghouse.org/webinars.cfm

Data Needs and Challenges

Why aren't there more CMFs for pedestrian and bicycle countermeasures?

Demand for Ped/Bike CMFs

"We are running into issues with [state] defunding our Highway Safety Improvement Program project because there are no star rated CMF's for Intersection Bulbouts."

Data Needs and Challenges: Few Sites

- Many of these treatments are relatively new
- Not many states and cities trying them
- Those that have them installed them recently

Data Needs and Challenges: Lack of Records

- Low cost treatments aren't tracked well/centrally (PCS addition, LPI timing change, crosswalk type change)
- Date of installation difficult to determine (need multiple years of signal timing plans)

Source: www.pedbikeimages.org / Toole Design Group

Data Needs and Challenges: Lack of Volume Data

- Ped/bike counting is still not a regular activity for many cities and states
- If done, focus is typically signalized intersections or downtown areas

- Can be done by research team, but...
 - Expensive
 - Can't go back to count in before period

Data Needs and Challenges: Lack of Volume Data

 Intersection Crossing Counts

(Charlotte and Toronto)

 Midblock Sidewalk Counts

(Chicago and Philadelphia)

Data Needs and Challenges: Crashes are Rare

- Crashes involving bicyclists or pedestrians are relatively rare events
- As a result, sample sizes are typically lower
- Need more years of data and/or more sites

Source: www.pedbikeimages.org / New York City DOT

Discussion

- ⇒ Send us your questions →
- ⇒ Follow up with us:
 - ⇒ pbic@pedbikeinfo.org
- ⇒ Archive at <u>www.pedbikeinfo.org/webinars</u>

pedbikeinfo.org f 😒 @pedbikeinfo