# PBIC Livable Communities Webinar Series

### Tools for Pedestrian and Bicycle Safety and Exposure Analysis



David Ragland, Founding Director, UC
Berkeley SafeTREC
John Bigham, GIS Program Manager,
SafeTREC
Robert Schneider, Researcher, SafeTREC

June 5, 1 pm



### **Today's Presentation**

### ⇒ Introduction and housekeeping

Audio issues? Dial into the phone line instead of using "mic & speakers"

### ⇒ PBIC Trainings and Webinars

http://www.walkinginfo.org

⇒ Registration and Archives at

http://walkinginfo.org/webinars

⇒ Questions at the end



**PBIC Livable Communities Webinar Series** 

Pedestrian and Bicycle Information Center

Webinar

Tools for Pedestrian and Bicycle Safety and Exposure Analysis Tuesday, June 5, from 10-11:30am (PDT)

Introduction

David Ragland, UC Berkeley SafeTREC
<u>www.tsc.berkeley.edu</u>

## Topics

### SafeTREC (Overview)

- Pedestrian and Bicyclist Safety (Examples)
- Data Reports and Data Tools (Examples)
- Data steps for pedestrian and bicyclist safety

### SafeTREC

- Founded in 2000 with a grant from OTS to reduce traffic fatalities and injuries through multi-disciplinary collaboration in education, technical assistance, and outreach.
- UC Partners include Public Health, Transportation Engineering, City and Regional Planning
- Funders have included NHTSA, OTS, Caltrans, local cities, agencies, foundations

## Topics

- SafeTREC (Overview)
- Pedestrian and Bicyclist Safety (Examples)
- Data Reports and Data Tools (Examples)
- Data steps for pedestrian and bicyclist safety

### Safe Routes to School Safety and Mobility Analysis: Report to the California Legislature





### UC Campus Periphery Project

Severe Injury Fatal  $\mathbf{O}$ 

0 Minor Injury



7

### Barriers to Transit among Seniors



A HOW-TO GUIDE



## Topics

- SafeTREC (Overview)
- Pedestrian and Bicyclist Safety (Examples)
- Data Reports and Data Tools (Examples)
- Data steps for pedestrian and bicyclist safety

Strategic Highway Safety Plan (Data Support Contract)

### Roles

- Data Support
  - Provide standard and customized data analyses to each Challenge Area
- 5% Report
  - Local Roads
- Challenge area participation

### SHSP Version 2



### 5% Report



### Continuous Risk Profile (CRP)



#### Continuous Risk Profile (CRP) Demonstration Webinar for Caltrans District Leaders

**Background**: Many existing methods for detecting collision concentration locations (such as the conventional sliding moving window approach) require segmentation of roadways and assume traffic collision data are spatially uncorrelated, resulting in false positives and false negatives.

#### **CRP Capabilities:**

- does not require segmentation of roadways
- spatial correlation in the collision data does not affect results
- lower false positive rates
- proactive identification of locations
- plots are highly reproducible over the years
- can capture "spillover benefit" of countermeasures
- simple to use.

#### **Continuous Risk Profile Analysis**





| County                 | CC                | Route      | 24E (Postmile: R5.046) |
|------------------------|-------------------|------------|------------------------|
| Date                   | 2008-01-01        | Time       | 19:00                  |
| Coordinate<br>Location |                   | 37.89129,  | -122.14302             |
| Download F             | ile               |            |                        |
| Sunset.jpg             |                   |            |                        |
| Description o          | f file: Descripti | on of file |                        |



## Topics

- SafeTREC (Overview)
- Pedestrian and Bicyclist Safety (Examples)
- Data Reports and Data Tools (Examples)
- Data steps for pedestrian and bicyclist safety

# Data steps for pedestrian and bicyclist safety

|    | Areas                                             | Examples from SafeTREC                                         | Presenter |
|----|---------------------------------------------------|----------------------------------------------------------------|-----------|
| 1. | Crash/injury data                                 | TIMS (geocoding)                                               | John      |
| 2. | Data access                                       | Public Access to TIMS                                          | John      |
| 3. | Pedestrian/bicycle<br>volume                      | Location-based analyses                                        | Bob       |
| 4. | Hazard assessment                                 | Bayesian analysis, Continuous<br>Risk Profile                  |           |
| 5. | Causal analysis /<br>countermeasure<br>assessment | Collision modification factors                                 |           |
| 6. | Benefit/cost                                      | Safety Index                                                   | John      |
| 7. | Integration with larger roadway data systems      | Integrate active transportation data with Caltrans data system |           |





### PBIC Webinar—Tools for Pedestrian and Bicycle Safety and Exposure Analysis

### John Bigham jbigham@berkeley.edu

Safe Transportation Research and Education Center University of California, Berkeley www.safetrec.berkeley.edu

## Topics

- Overview of TIMS
- Accessing and visualizing pedestrian and bicycle collision data in TIMS
  - SWITRS Query & Map
  - SWITRS GIS Map
- Benefit-cost calculator for safety countermeasures



Transportation Injury Mapping System (TIMS)

- Provides data and mapping analysis tools and information for traffic safety related research, policy and planning.
- Free account application, open to everyone
- http://tims.berkeley.edu





## SWITRS

- California Statewide Integrated Traffic Records System
- Maintained by California Highway Patrol
- Approximately 200,000 injury collisions each year



## SWITRS Query & Map Tool

- Data query focused application
   Quick results, quick refresh
- One page summary statistics
- Download collision, party, victim files
- Google Maps collision display
  - 5,000 collisions limit
  - Collision points clustered until zoomed in



## SWITRS GIS Map

- Map-centric collision viewing with other data layers (census tracts, TAZ, schools, etc.)
- Same collision query UI as Query & Map tool
- 1,000 collisions display limit
- Focused collision spatial selection tools
  - Drawing
  - Buffer (intersection or corridor)
  - Region (TAZ, census tract, zip code)



## **TIMS Mapping Applications**

• DEMO







Message: Buffer Process Prepared. Select drawing option and draw on map.

## **Benefit-Cost Calculator**

- Evaluate benefit-cost of potential safety countermeasures
  - Benefit = reduction in comprehensive collision costs
  - Cost = construction costs
- Required for agencies to use that are applying for Highway Safety Improvement Program (HSIP) funds in California
- Includes pedestrian and bicycle specific countermeasures



### **Benefit-Cost Calculator**

• DEMO



## Local Roadway Safety Manual

- Partnership of Caltrans, FHWA and SafeTREC
- Great resource for conceptual guidance
  - Identifying safety issues
  - Safety data analysis
  - Countermeasures selection and b/c analysis
- <u>http://www.dot.ca.gov/hq/LocalPrograms</u> /HSIP/apply\_now.htm



## Import into Benefit-Cost Calculator

| nefit / (         | Cost Calculat    | Resources         | News        | Help Admi             | n Developn         | ient |           | 🖛 Caltran                                                                                                                                                         |
|-------------------|------------------|-------------------|-------------|-----------------------|--------------------|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                 | Counterm         | easure(s) Sel     | ection      | 3 4                   |                    |      | New Calcu | lation Load Save                                                                                                                                                  |
| rash Data         | Time Period:     | From 0            | 1/01/2001   | то 12/31/20           | 09 Years           | 9    |           | < ⊳                                                                                                                                                               |
| Counterr          | neasure 1        |                   |             |                       |                    |      |           | Current Results                                                                                                                                                   |
| Counterr          | neasure 2        |                   |             |                       |                    |      |           | Application ID:<br>07-Pomona                                                                                                                                      |
| Install pe        | edestrian counto | lown signal hea   | ds          |                       |                    |      |           | From: 01/01/2001<br>To: 12/31/2009<br>Years: 9                                                                                                                    |
| A. Input          | Countermeasur    | e                 |             | Clear Count           | termeasure         |      |           | 3.Install pedestrian countd<br>Type: Ped and Bike<br>Crf. 25<br>Life: 20<br>Annual Benefit: \$14,714<br>Life Benefit: \$294,278<br>Total Cost: \$1,000,000 (100%) |
| Number            | Project Type     |                   | Countermea  | sure                  | Туре               | CRF  | Life      |                                                                                                                                                                   |
| <mark>\$19</mark> | Ped and Bike     | Install pedestria | n countdown | signal heads          | Ped &<br>Bike      | 25   | 20        |                                                                                                                                                                   |
| B. Input          | Crash Data       |                   |             |                       |                    |      |           |                                                                                                                                                                   |
| л Manu            | ial Entry 🧔 Imj  | port File         |             | Clear Crash           | Data               |      |           |                                                                                                                                                                   |
|                   | P-               | Severe            | Injury -    | Injury -<br>Complaint | Property<br>Damage | Tota |           |                                                                                                                                                                   |
| Crash T           | ype (Death)      | Injury            | Visible     | of Pain               | Only               |      |           |                                                                                                                                                                   |

Signalized

NonSignalized Roadway

| CM<br>Number | Project Type 🗣      | Countermeasure                                              | Crash Type | CRF | Life |   |
|--------------|---------------------|-------------------------------------------------------------|------------|-----|------|---|
| R29          | Operation / Warning | Install curve advance warning signs (flashing beacon)       | All        | 30  | 10   | * |
| R30          | Operation / Warning | Install dynamic / variable speed warning signs              | All        | 30  | 10   |   |
| R31          | Operation / Warning | Install delineators, reflectors and/or object markers       | All        | 15  | 10   |   |
| R32          | Operation / Warning | Install edge-lines and centerlines                          | All        | 25  | 10   |   |
| R33          | Operation / Warning | Install no-passing line                                     | All        | 45  | 10   |   |
| R34          | Operation / Warning | Install centerline rumble strips / stripes                  | All        | 20  | 10   |   |
| R35          | Operation / Warning | Install edgeline rumble strips / stripes                    | All        | 15  | 10   |   |
| R36          | Ped and Bike        | Install bike lanes                                          | Ped & Bike | 35  | 20   |   |
| R37          | Ped and Bike        | Install sidewalk / pathway (to avoid walking along roadway) | Ped & Bike | 80  | 20   |   |
| R38          | Ped and Bike        | Install pedestrian crossing (with enhanced safety features) | Ped & Bike | 30  | 10   |   |
| R39          | Ped and Bike        | Install raised pedestrian crossing                          | Ped & Bike | 35  | 10   | ш |
| R40          | Animal              | Install animal fencing                                      | Animal     | 80  | 20   |   |
| R41          | Truck               | Install truck escape ramp                                   | All        | 20  | 20   | + |

| Selected Cour | itermeasure  |                                                             |            |     | •    |
|---------------|--------------|-------------------------------------------------------------|------------|-----|------|
| CM Number     | Project Type | Countermeasure                                              | Crash Type | CRF | Life |
| R37           | Ped and Bike | Install sidewalk / pathway (to avoid walking along roadway) | Ped & Bike | 80  | 20   |

Yes Cancel

#### Import Crash Data file This map will not be saved within the project. Please print the map after displaying the crash locations. Choose File 7 of 7 (100%) crash(es) mapped. (Crash Type: Ped & Bike) Pomona W Mission Blvd E Mission Blvd **Project Information** 3 0 M (71) N W Mission Blvd Washington Application ID: Park 07-Pomona . S East Phillips Blvd 92 Crash Data: 9 years E Phillips Blv W Phillips Blvd From 01/01/2001 71 12/31/2009 To Francis Ave Phillip **Crash Summary** Rand Countermeasure 3 CM Number: S19 Mod: Ped and Bike Injury - Property Injury -Fatality Severe Name: Install pedestrian Crash Type Other Complain Damage Total (Death) Injury countdown signal heads Visible of Pain Only Crash Type: Ped & Bike All 5 0 0 3 0 8 CRF: 25 Night 0 0 3 2 0 5 Life: 20 Ped & Bike 0 0 4 3 0 Pantera Park **Emerg Vehicle** 0 0 0 0 0 0 Fatality - from File 0 0 0 Animal 0 0 0 Other - from File Fatality - User Input Other - User Input Crash Type of Selected Countermeasure Crash Summary Close Coogle Print Map

Ok Cancel

|                                                                             | II IOOIS         | Resources                                               | News                  | Help Ac                                        | dmin                                   | Development                                                                                                      |                                           |                                                                          |        |
|-----------------------------------------------------------------------------|------------------|---------------------------------------------------------|-----------------------|------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|--------|
| efit / Cost                                                                 | Calculato        | or                                                      |                       |                                                |                                        |                                                                                                                  |                                           | 4                                                                        | - Calt |
|                                                                             | 0                | 4 Result Set                                            | ummary                |                                                |                                        | Print Summary                                                                                                    | New Calcula                               | tion Load                                                                | Save   |
| oiect Inform                                                                | ation            |                                                         |                       |                                                |                                        |                                                                                                                  |                                           |                                                                          |        |
| plication ID                                                                |                  | 07                                                      | '-Pomona              | Versio                                         | on                                     | 2                                                                                                                |                                           | <                                                                        | Þ      |
|                                                                             |                  |                                                         |                       |                                                |                                        |                                                                                                                  |                                           |                                                                          |        |
| Install pedes                                                               | strian count     | down signal head                                        | ds                    |                                                |                                        |                                                                                                                  |                                           |                                                                          |        |
| CM Numbor                                                                   | c                | Project Type                                            |                       | C                                              | rach T                                 | VDO                                                                                                              | CDE                                       | Lifo                                                                     | ĩ      |
| CM Number<br>S19                                                            | F                | Project Type<br>Ped and Bike                            |                       | C                                              | r <mark>ash T</mark><br>ed & B         | ype<br>ke                                                                                                        | <b>CRF</b> 25                             | Life<br>20                                                               |        |
| CM Number<br>S19<br>Crash Type                                              | Fatality (D      | Project Type<br>Ped and Bike<br>reath) Severe Inju      | ıry İnju<br>Visi      | C<br>Pr<br>ry - Other<br>ble                   | rash T<br>ed & B<br>Inju<br>of P       | ype<br>ke<br>ry - Complaint<br>ain                                                                               | CRF<br>25<br>Property<br>Damage Only      | Life<br>20<br>Total                                                      |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike                                | Fatality (D      | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>O | ıry İnju<br>Visi<br>5 | C<br>Pi<br>ry - Other<br>ble                   | rash T<br>ed & B<br>Inju<br>of P<br>3  | 'ype<br>ke<br>ry - Complaint<br>ain                                                                              | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8                                                 |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike                                | Fatality (D      | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>O | ıry İnju<br>Visi<br>5 | C<br>Pe<br>ry - Other<br>ble                   | ed & B<br>Inju<br>of P<br>3            | Type<br>ike<br>ry - Complaint<br>ain<br>Annual Benefi                                                            | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714                                     |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike                                | Fatality (D      | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>O | ıry İnju<br>Visi<br>5 | C<br>Pr<br>ry - Other<br>ble                   | ed & B<br>Inju<br>of P<br>3            | <b>ype</b><br>ike<br><b>ry - Complaint</b><br><b>ain</b><br>Annual Benefit<br>Life Benefit                       | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714<br>\$294,278                        |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike                                | Fatality (D      | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>0 | ıry İnju<br>Visi<br>5 | C<br>Pr<br>ry - Other<br>ble                   | irash T<br>ed & B<br>Inju<br>of P<br>3 | ype<br>ike<br>ry - Complaint<br>ain<br>Annual Benefi<br>Life Benefit<br>Cost                                     | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714<br>\$294,278<br>\$1,000,000         |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike                                | Fatality (D      | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>O | ıry İnju<br>Visi<br>5 | C<br>Pr<br>ry - Other<br>ble                   | Inju<br>of P<br>3                      | <b>ype</b><br>ike<br><b>ry - Complaint</b><br><b>ain</b><br>Annual Benefi<br>Life Benefit<br>Cost<br>B/C Ratio   | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714<br>\$294,278<br>\$1,000,000<br>0.29 |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike<br>nefit Cost R                | Fatality (D<br>0 | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>0 | ıry İnju<br>Visi<br>5 | C<br>Pr<br>ry - Other<br>ble                   | irash T<br>ed & B<br>Inju<br>of P<br>3 | <b>Type</b><br>ike<br><b>ry - Complaint</b><br><b>ain</b><br>Annual Benefit<br>Life Benefit<br>Cost<br>B/C Ratio | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714<br>\$294,278<br>\$1,000,000<br>0.29 |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike<br>nefit Cost R<br>tal Benefit | Fatality (D<br>0 | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>O | ıry İnju<br>Visi<br>5 | C<br>Pr<br>ry - Other<br>ble                   | Prash T<br>ed & B<br>Inju<br>of P<br>3 | ype<br>ike<br>ry - Complaint<br>ain<br>Annual Benefit<br>Life Benefit<br>Cost<br>B/C Ratio                       | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714<br>\$294,278<br>\$1,000,000<br>0.29 |        |
| CM Number<br>S19<br>Crash Type<br>Ped & Bike<br>Ped & Bike                  | Fatality (D<br>0 | Project Type<br>Ped and Bike<br>Peath) Severe Inju<br>O | ıry İnju<br>Visi<br>5 | C<br>Pr<br>ry - Other<br>ble<br>\$29<br>\$1,00 | Prash T<br>ed & B<br>Inju<br>of P<br>3 | ype<br>ike<br>ry - Complaint<br>ain<br>Annual Benefit<br>Life Benefit<br>Cost<br>B/C Ratio                       | CRF<br>25<br>Property<br>Damage Only<br>0 | Life<br>20<br>Total<br>8<br>\$14,714<br>\$294,278<br>\$1,000,000<br>0.29 |        |

## **Funding Support**

- Funding for TIMS was provided by a grant from the California Office of Traffic Safety, through the National Highway Traffic Safety Administration.
- Funding for the B/C Calculator provided by the Caltrans Division of Local Assistance



### Questions?

• Thank you!


# Pedestrian & Bicycle Volume Modeling for Crash Risk Analysis



**Robert Schneider, Ph.D.** UC Berkeley Safe Transportation Research & Education Center PBIC Webinar—June 2012

## How Many People are Walking & Bicycling?



# Where are People Walking & Bicycling?



# What Types of Locations have the Greatest Risk of Pedestrian or Bicycle Crashes?





# **Pedestrian Crash Analysis**

| Mainline<br>Roadway        | Intersecting<br>Roadway |  | Reported<br>Pedestrian<br>Crashes<br>(1996-2005) |  |
|----------------------------|-------------------------|--|--------------------------------------------------|--|
| Mission<br>Boulevard       | Torrano<br>Avenue       |  | 5                                                |  |
| Davis Street               | Pierce Avenue           |  | 4                                                |  |
| Foothill<br>Boulevard      | D Street                |  | 1                                                |  |
| Mission<br>Boulevard       | Jefferson<br>Street     |  | 5                                                |  |
| University<br>Avenue       | Bonar Street            |  | 7                                                |  |
| International<br>Boulevard | 107th Avenue            |  | 2                                                |  |
| San Pablo<br>Avenue        | Harrison Street         |  | 2                                                |  |
| East 14th<br>Street        | Hasperian<br>Boulevard  |  | 1                                                |  |
| International<br>Boulevard | 46th Avenue             |  | 3                                                |  |
| Solano Avenue              | Masonic<br>Avenue       |  | 2                                                |  |
| Broadway                   | 12 <sup>th</sup> Street |  | 5                                                |  |

# **Pedestrian RISK Analysis**

| Mainline<br>Roadway        | Intersecting<br>Roadway | Estimated<br>Total Weekly<br>Pedestrian<br>Crossings | Annual<br>Pedestrian<br>Volume<br>Estimate | Ten-Year<br>Pedestrian<br>Volume<br>Estimate | Reported<br>Pedestrian<br>Crashes<br>(1996-2005) | Pedestrian<br>Risk<br>(Crashes per<br>10,000,000<br>crossings) |   |
|----------------------------|-------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|---|
| Mission<br>Boulevard       | Torrano<br>Avenue       | 1,169                                                | 60,796                                     | 607,964                                      | 5                                                | 82.24                                                          | ) |
| Davis Street               | Pierce Avenue           | 1,570                                                | 81,619                                     | 816,187                                      | 4                                                | 49.01                                                          |   |
| Boulevard                  | D Street                | 632                                                  | 32,862                                     | 328,624                                      | 1                                                | 30.43                                                          |   |
| Mission<br>Boulevard       | Jefferson<br>Street     | 5,236                                                | 272,246                                    | 2,722,464                                    | 5                                                | 18.37                                                          |   |
| University<br>Avenue       | Bonar Street            | 11,175                                               | 581,113                                    | 5,811,127                                    | 7                                                | 12.05                                                          |   |
| International<br>Boulevard | 107th Avenue            | 3,985                                                | 207,243                                    | 2,072,429                                    | 2                                                | 9.65                                                           |   |
| San Pablo<br>Avenue        | Harrison Street         | 4,930                                                | 256,357                                    | 2,563,572                                    | 2                                                | 7.80                                                           |   |
| East 14th<br>Street        | Hasperian<br>Boulevard  | 3,777                                                | 196,410                                    | 1,964,102                                    | 1                                                | 5.09                                                           |   |
| International<br>Boulevard | 46th Avenue             | 12,303                                               | 639,752                                    | 6,397,522                                    | 3                                                | 4.69                                                           |   |
| Solano Avenue              | Masonic<br>Avenue       | 22,203                                               | 1,154,559                                  | 11,545,589                                   | 2                                                | 1.73                                                           |   |
| Broadway                   | 12 <sup>th</sup> Street | 112,896                                              | 5,870,590                                  | 58,705,898                                   | 5                                                | 0.85                                                           | ) |

# Which Intersection Features are Associated with Pedestrian Risk? (Exploratory Research)

#### Pedestrian Crossings (+)

While intersections with more pedestrian crossings have more pedestrian crashes, there may be a "safety in numbers" effect (i.e., lower crash risk per crossing).

(Expected Effect\*: 100% more pedestrian crossings, 49% more crashes)

#### Motor Vehicle Volume (+)

There may be a "danger in numbers" effect with mainline motor vehicle volume, but need to explore the influence of congestion and speed.

(Expected Effect\*: 100% more mainline AADT, >100% more crashes)





For more information on this study, see:

Schneider, R.J., M.C. Diogenes, L.S. Arnold, V. Attaset, J. Griswold, and D.R. Ragland. "Association between Roadway Intersection Characteristics and Pedestrian Crash Risk in Alameda County, California," Transportation Research Record: Journal of the Transportation Research Board, Volume 2198, pp. 41-51, 2010.

# Which Intersection Features are Associated with Pedestrian Risk?

#### Number of Right-Turn-Only Lanes (+)

Intersections with more right-turn-only lanes may have longer crossing distances and more complex interactions between drivers and pedestrians.

(Expected Effect\*: 1 more right-turn-only lane, 53% more crashes)

Number of Driveway Crossings (+) Intersections with more non-residential driveway crossings within 50 ft. may have more conflict points; drivers may focus on entering or exiting motor vehicle lanes.

(Expected Effect\*: 1 more driveway crossing, 33% more crashes)

#### Medians (-)

Mainline and cross-street legs with medians have a refuge that allows pedestrians to cross one direction of traffic at a time, which may make crossing safer.







(Expected Effect\*: Medians on mainline roadway crossings, 75% fewer crashes)

# Which Intersection Features are Associated with Pedestrian Risk?

#### Number of Commercial Properties (+)

Intersections with more commercial properties within 0.1 miles may have more drivers looking at signs and for parking; more pedestrians may cross between cars.

(Expected Effect\*: 10 more commercial properties: 45% more crashes)

**Percentage of Residents Under 18 (+)** A greater percentage of young pedestrians within 0.25 miles may indicate that more of the people crossing are less experienced and have higher risk crossing busy streets.

(Expected Effect\*: 1% more residents under 18: 7% more crashes)





\*Italics show the change in the expected number of pedestrian crashes at intersections with different features, in order to provide a frame of reference. These numbers are based on the model, which reflects the 81 Alameda County study intersections as a whole. The effect of any particular treatment is highly context specific.

## Many Demand Analysis Methods

- Traditional 4-step models
- Direct counts & surveys
- Sketch plan with expertdefined weights
- Network-based models
- Location-based models







Berkeley, CA Traffic Analysis Zones



Berkeley, CA Traffic Analysis Zones

#### Pedestrian & Bicycle Counts





# Census/ACS Data

Source: City of Seattle Bicycle Master Plan, 2007

#### **Census/ACS** Data

#### **City of Alexandria--Pedestrian Commuting**



Source: City of Alexandria, VA Pedestrian and Bicycle Mobility Plan, 2008

# **Sketch Plan Methods**



Source: Lancaster County Pedestrian and Bicycle Transportation Plan, Phase II, 2004

#### **Sketch Plan Methods**



Source: Goodman, D., R. Schneider, and T. Griffiths. "Put Your Money where the People Are," *Planning*, June 2009.

## **Sketch Plan Methods**



Source: City of Alexandria, VA Pedestrian and Bicycle Mobility Plan, 2008

#### Network-Based Model: Space Syntax



- Street and path networks (potential movement patterns)
- Viewsheds
- Fathom Visibility Graph Analysis Software

Downtown Boston

Source: Raford and Ragland. *Pedestrian Volume Modeling For Traffic Safety & Exposure Analysis*, 2005.

#### Network-Based Model: Clifton Maryland Ped Model





Source: Schneider R.J., L.S. Arnold, and D.R. Ragland. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," Transportation Research Record 2140, pp. 13-26, 2009.

Approach: Develop a model to estimate pedestrian intersection crossing volumes at different locations



## **Location-Based Models**

- Schneider, et al. San Francisco pedestrian (2012)
- Miranda-Moreno, et al. Montreal pedestrian (2011)
- Griswold, Medury, & Schneider, Alameda County bicycle (2011)
- Fehr & Peers, Santa Monica pedestrian & bicycle (2010)
- Alta Planning + Design, San Diego pedestrian & bicycle (2010)
- Schneider, Arnold & Ragland, Alameda County pedestrian (2009)
- Liu & Griswold, San Francisco pedestrian (2009)
- Pulugurtha & Repaka, Charlotte pedestrian (2008)

#### **TABLE 1 Examples of Previous Pedestrian Intersection Volume Models**

| General information   |                                                                      | 5                                  | Pedestri                                                                                                                                                 | an count info                                                                                           | rmation                                                                      |                                                                                                                    | Statisti                                                                                                                                                                            | Model information                                                                                                                                                                   |                                                                      |                                                             |                                                                                                                 |                                                   |                                                                                                                                |
|-----------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Model<br>Location     | Developed by                                                         | Intersection:<br>Used for<br>Model | s<br>Pedestrian Count<br>Description                                                                                                                     | Type of Count<br>Sites                                                                                  | Count<br>Period(s) Used<br>for Model                                         | Weather<br>During Counts                                                                                           | Land Use                                                                                                                                                                            | Transportation System                                                                                                                                                               | Socioeconomic<br>Characteristics                                     | Other                                                       | Model Output                                                                                                    | Model<br>Type                                     | Validation Testing                                                                                                             |
| Charlotte, NC         | UNC Charlotte<br>(Pulugurtha &<br>Repaka 2008)                       | 176                                | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized<br>Intersections                                                                             | 7 am-7 pm                                                                    | Clear weath conditions                                                                                             | Pop. within 0.25 mi.     Jobs within 0.25 mi.     Mixed land use within     0.25 mi.     Urban residential area     within 0.25 mi.                                                 | <ul> <li>Number of bus stops<br/>within 0.25 mi.</li> </ul>                                                                                                                         |                                                                      |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 7 pm<br>(shorter periods<br>also modeled)     | Linear                                            | None reported                                                                                                                  |
| Alameda<br>County, CA | UC Berkeley<br>SafeTREC<br>(Schneider,<br>Arnold, &<br>Ragland 2009) | 50                                 | Pedestrians<br>counted every<br>time they crossed<br>a leg of the<br>intersection<br>(pedestrians<br>within 50 feet of<br>the crosswalk<br>were counted) | Signalized and<br>unsignalized<br>Intersections                                                         | Tu, W, or Th:<br>12-2 pm or 3-5<br>pm; Sa: 9-11<br>am, 12-2 pm,<br>or 3-5 pm | All weather<br>conditions;<br>weather<br>adjustment<br>factors were<br>calculated<br>from<br>automated<br>counters | Population within 0.5 m     Employment within 0.25 m     Commercial properties within 0.25 m                                                                                        | <ul> <li>BART (regional transit)<br/>station within 0.1 mi.</li> </ul>                                                                                                              |                                                                      |                                                             | Total pedestrian<br>crossings at<br>intersections<br>during a typical<br>week                                   | Linear                                            | 46 historic counts<br>used for<br>validation (30<br>additional<br>intersections<br>were counted for<br>validation in<br>2009)  |
| San Francisco,<br>CA  | San Francisco<br>State (Liu &<br>Griswold<br>2009)                   | 63                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>2:30-6:30 pm                                                     | Not reported                                                                                                       | Population density (net)<br>within 0.5 mi.<br>Employment density<br>(net) within 0.25 mi.<br>Patch richness density<br>within 0.063 mi.<br>Residential land use<br>within 0.063 mi. | MUNI (light-rail transit)<br>stop density within 0.38<br>mi.<br>Presence of bike lane at<br>intersection                                                                            |                                                                      | • Mean slope<br>within 0.063<br>mi.                         | Total pedestrian<br>crossings at<br>intersections<br>from 2:30-6:30<br>pm on typical<br>weekday                 | Linear                                            | None reported                                                                                                                  |
| Santa Monica,<br>CA   | Fehr & Peers<br>(Haynes et al .<br>2010)                             | 92                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>5-6 pm                                                           | Not reported                                                                                                       | Employment density<br>within 0.33 mi.<br>Within a commercially-<br>zoned area                                                                                                       | <ul> <li>Afternoon bus frequency</li> <li>Average speed limit on<br/>the intersection<br/>approaches</li> </ul>                                                                     |                                                                      | Distance<br>from Ocean                                      | Total pedestrian<br>crossings at<br>intersections<br>from 5-6 pm on<br>typical weekday                          | Linear                                            | Approximately<br>107 additional<br>intersections<br>were counted for<br>validation                                             |
| San Diego, CA         | Alta Planning +<br>Design (Jones<br><i>et al.</i> 2010)              | 80                                 | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized and<br>unsignalized<br>intersections<br>(includes<br>some<br>trail/roadway<br>intersections) | Weekdays<br>7-9 am                                                           | Nice weathe                                                                                                        | Population density<br>within 0.25 mi.<br>Employment density<br>within 0.5 mi.<br>Presence of retail within<br>0.5 mi.                                                               | <ul> <li>Greater than 6,000<br/>transit ridership at bus<br/>stops within 0.25 mi.</li> <li>4 or more Class I bike<br/>paths within 0.25 mi.</li> </ul>                             | More than 100<br>households<br>without<br>vehicles within<br>0.5 mi. |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 9 am                                          | Log-linear                                        | None reported                                                                                                                  |
| Montreal,<br>Quebec   | McGill<br>University<br>(Miranda-<br>Moreno &<br>Fernandes<br>2011)  | 1018                               | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized<br>Intersections                                                                             | Weekdays 6-9<br>am, 11 am-1<br>pm, and 3:30-<br>6:30 pm                      | Most counts<br>during nice<br>weather;<br>weather<br>variables were<br>analyzed                                    | Population within 400 m     Commercial space within     S0 m     Open space within 150 m     Schools within 400 m                                                                   | <ul> <li>Subway within 150 m</li> <li>Bus station within 150 m</li> <li>% Major arterials within 400 m</li> <li>Street segments within 400 m</li> <li>4-way intersection</li> </ul> |                                                                      | Distance to<br>downtown     Daily high<br>temperature >32°C | Total pedestrian<br>crossings at<br>intersections<br>over 8 count<br>hours (shorter<br>periods also<br>modeled) | Log-linear<br>(also used<br>Negative<br>binomial) | Counts at 20% of<br>the intersections<br>were compared<br>to a model based<br>on 80% of the<br>intersections for<br>validation |

#### **TABLE 1 Examples of Previous Pedestrian Intersection Volume Models**

| General information   |                                                                      | 5                                  | Pedestri                                                                                                                                                 | an count info                                                                                           | rmation                                                                      |                                                                                                                    | Statisti                                                                                                                                                                            | Model information                                                                                                                                       |                                                                      |                                                             |                                                                                                                 |                                                   |                                                                                                                                |
|-----------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Model<br>Location     | Developed by                                                         | Intersection:<br>Used for<br>Model | s<br>Pedestrian Count<br>Description                                                                                                                     | Type of Count<br>Sites                                                                                  | Count<br>Period(s) Used<br>for Model                                         | Weather<br>During Counts                                                                                           | Land Use                                                                                                                                                                            | Transportation System                                                                                                                                   | Socioeconomic<br>Characteristics                                     | Other                                                       | Model Output                                                                                                    | Model<br>Type                                     | Validation Testing                                                                                                             |
| Charlotte, NC         | UNC Charlotte<br>(Pulugurtha &<br>Repaka 2008)                       | 176                                | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized<br>Intersections                                                                             | 7 am-7 pm                                                                    | Clear weather<br>conditions                                                                                        | Pop. within 0.25 mi.     Jobs within 0.25 mi.     Mixed land use within     0.25 mi.     Urban residential area     within 0.25 mi.                                                 | Number of bus stops<br>within 0.25 mi.                                                                                                                  |                                                                      |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 7 pm<br>(shorter periods<br>also modeled)     | Linear                                            | None reported                                                                                                                  |
| Alameda<br>County, CA | UC Berkeley<br>SafeTREC<br>(Schneider,<br>Arnold, &<br>Ragland 2009) | 50                                 | Pedestrians<br>counted every<br>time they crossed<br>a leg of the<br>intersection<br>(pedestrians<br>within 50 feet of<br>the crosswalk<br>were counted) | Signalized and<br>unsignalized<br>intersections                                                         | Tu, W, or Th:<br>12-2 pm or 3-5<br>pm; Sa: 9-11<br>am, 12-2 pm,<br>or 3-5 pm | All weather<br>conditions;<br>weather<br>adjustment<br>factors were<br>calculated<br>from<br>automated<br>counters | Population within 0.5 mi.     Employment within 0.25 mi.     Commercial properties within 0.25 mi.                                                                                  | • BART (regional transit)<br>station within 0.1 mi.                                                                                                     |                                                                      |                                                             | Total pedestrian<br>crossings at<br>intersections<br>during a typical<br>week                                   | Linear                                            | 46 historic counts<br>used for<br>validation (30<br>additional<br>intersections<br>were counted for<br>validation in<br>2009)  |
| San Francisco,<br>CA  | San Francisco<br>State (Liu &<br>Griswold<br>2009)                   | 63                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>2:30-6:30 pm                                                     | Not reported                                                                                                       | Population density (net)<br>within 0.5 mi.<br>Employment density<br>(net) within 0.25 mi.<br>Patch richness density<br>within 0.063 mi.<br>Residential land use<br>within 0.063 mi. | MUNI (light-rail transit)<br>stop density within 0.38<br>mi.<br>Presence of bike lane at<br>intersection                                                |                                                                      | • Mean slope<br>within 0.063<br>mi.                         | Total pedestrian<br>crossings at<br>intersections<br>from 2:30-6:30<br>pm on typical<br>weekday                 | Linear                                            | None reported                                                                                                                  |
| Santa Monica,<br>CA   | Fehr & Peers<br>(Haynes et al .<br>2010)                             | 92                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>5-6 pm                                                           | Not reported                                                                                                       | Employment density<br>within 0.33 mi.     Within a commercially-<br>zoned area                                                                                                      | <ul> <li>Afternoon bus frequency</li> <li>Average speed limit on<br/>the intersection<br/>approaches</li> </ul>                                         |                                                                      | • Distance<br>from Ocean                                    | Total pedestrian<br>crossings at<br>intersections<br>from 5-6 pm on<br>typical weekday                          | Linear                                            | Approximately<br>107 additional<br>intersections<br>were counted for<br>validation                                             |
| San Diego, CA         | Alta Planning +<br>Design (Jones<br><i>et al.</i> 2010)              | 80                                 | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized and<br>unsignalized<br>intersections<br>(includes<br>some<br>trail/roadway<br>intersections) | Weekdays<br>7-9 am                                                           | Nice weather                                                                                                       | Population density<br>within 0.25 mi.     Employment density<br>within 0.5 mi.     Presence of retail within<br>0.5 mi.                                                             | <ul> <li>Greater than 6,000<br/>transit ridership at bus<br/>stops within 0.25 mi.</li> <li>4 or more Class I bike<br/>paths within 0.25 mi.</li> </ul> | More than 100<br>households<br>without<br>vehicles within<br>0.5 mi. |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 9 am                                          | Log-linear                                        | None reported                                                                                                                  |
| Montreal,<br>Quebec   | McGill<br>University<br>(Miranda-<br>Moreno &<br>Fernandes<br>2011)  | 1018                               | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized<br>Intersections                                                                             | Weekdays 6-9<br>am, 11 am-1<br>pm, and 3:30-<br>6:30 pm                      | Most counts<br>during nice<br>weather;<br>weather<br>variables were<br>analyzed                                    | Population within 400 m     Commercial space within     50 m     Open space within 150 m     Schools within 400 m                                                                   | Subway within 150 m     Bus station within 150 m     % Major arterials within     400 m     Street segments within     400 m     4-way intersection     |                                                                      | Distance to<br>downtown     Daily high<br>temperature >32°C | Total pedestrian<br>crossings at<br>intersections<br>over 8 count<br>hours (shorter<br>periods also<br>modeled) | Log-linear<br>(also used<br>Negative<br>binomial) | Counts at 20% of<br>the intersections<br>were compared<br>to a model based<br>on 80% of the<br>intersections for<br>validation |

#### **TABLE 1 Examples of Previous Pedestrian Intersection Volume Models**

| General information   |                                                                      |                                    | Pedestri                                                                                                                                                 | an count info                                                                                           | rmation                                                                      |                                                                                                                      | Statisti                                                                                                                                                                            | Model information                                                                                                                           |                                                                      |                                                             |                                                                                                                 |                                                   |                                                                                                                                |
|-----------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Model<br>Location     | Developed by                                                         | Intersections<br>Used for<br>Model | Pedestrian Count<br>Description                                                                                                                          | Type of Count<br>Sites                                                                                  | Count<br>Period(s) Used<br>for Model                                         | Weather<br>During Counts                                                                                             | Land Use                                                                                                                                                                            | Transportation System                                                                                                                       | Socioeconomic<br>Characteristics                                     | Other                                                       | Model Output                                                                                                    | Model<br>Type                                     | Validation Testing                                                                                                             |
| Charlotte, NC         | UNC Charlotte<br>(Pulugurtha &<br>Repaka 2008)                       | 176                                | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized<br>intersections                                                                             | 7 am-7 pm                                                                    | Clear weather<br>conditions                                                                                          | Pop. within 0.25 mi.     Jobs within 0.25 mi.     Mixed land use within     0.25 mi.     Urban residential area     within 0.25 mi.                                                 | • Number of bus stops<br>within 0.25 mi.                                                                                                    |                                                                      |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 7 pm<br>(shorter periods<br>also modeled)     | Linear                                            | None reported                                                                                                                  |
| Alameda<br>County, CA | UC Berkeley<br>SafeTREC<br>(Schneider,<br>Arnold, &<br>Ragland 2009) | 50                                 | Pedestrians<br>counted every<br>time they crossed<br>a leg of the<br>intersection<br>(pedestrians<br>within 50 feet of<br>the crosswalk<br>were counted) | Signalized and<br>unsignalized<br>intersections                                                         | Tu, W, or Th:<br>12-2 pm or 3-5<br>pm; Sa: 9-11<br>am, 12-2 pm,<br>or 3-5 pm | All weather<br>conditions;<br>weather<br>adjustment <<br>factors were<br>calculated<br>from<br>automated<br>counters | Population within 0.5 mi.     Employment within 0.25 mi.     Commercial properties     within 0.25 mi.                                                                              | • BART (regional transit)<br>station within 0.1 mi.                                                                                         |                                                                      |                                                             | Total pedestrian<br>crossings at<br>intersections<br>during a typical<br>week                                   | Linear                                            | 46 historic counts<br>used for<br>validation (30<br>additional<br>intersections<br>were counted for<br>validation in<br>2009)  |
| San Francisco,<br>CA  | San Francisco<br>State (Liu &<br>Griswold<br>2009)                   | 63                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>2:30-6:30 pm                                                     | Not reported                                                                                                         | Population density (net)<br>within 0.5 mi.<br>Employment density<br>(net) within 0.25 mi.<br>Patch richness density<br>within 0.063 mi.<br>Residential land use<br>within 0.063 mi. | MUNI (light-rail transit)<br>stop density within 0.38<br>mi.<br>Presence of bike lane at<br>intersection                                    |                                                                      | • Mean slope<br>within 0.063<br>mi.                         | Total pedestrian<br>crossings at<br>intersections<br>from 2:30-6:30<br>pm on typical<br>weekday                 | Linear                                            | None reported                                                                                                                  |
| Santa Monica,<br>CA   | Fehr & Peers<br>(Haynes et al .<br>2010)                             | 92                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>5-6 pm                                                           | Not reported                                                                                                         | Employment density<br>within 0.33 mi.     Within a commercially-<br>zoned area                                                                                                      | Afternoon bus frequency     Average speed limit on the intersection approaches                                                              |                                                                      | Distance<br>from Ocean                                      | Total pedestrian<br>crossings at<br>intersections<br>from 5-6 pm on<br>typical weekday                          | Linear                                            | Approximately<br>107 additional<br>Intersections<br>were counted for<br>validation                                             |
| San Diego, CA         | Alta Planning +<br>Design (Jones<br><i>et al.</i> 2010)              | 80                                 | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized and<br>unsignalized<br>intersections<br>(includes<br>some<br>trail/roadway<br>intersections) | Weekdays<br>7-9 am                                                           | Nice weather                                                                                                         | Population density<br>within 0.25 mi.<br>Employment density<br>within 0.5 mi.<br>Presence of retail within<br>0.5 mi.                                                               | Greater than 6,000<br>transit ridership at bus<br>stops within 0.25 mi.     4 or more Class I bike<br>paths within 0.25 mi.                 | More than 100<br>households<br>without<br>vehicles within<br>0.5 mi. |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 9 am                                          | Log-linear                                        | None reported                                                                                                                  |
| Montreal,<br>Quebec   | McGill<br>University<br>(Miranda-<br>Moreno &<br>Fernandes<br>2011)  | 1018                               | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized<br>Intersections                                                                             | Weekdays 6-9<br>am, 11 am-1<br>pm, and 3:30-<br>6:30 pm                      | Most counts<br>during nice<br>weather;<br>weather<br>variables were<br>analyzed                                      | Population within 400 m     Commercial space within     50 m     Open space within 150 m     Schools within 400 m                                                                   | Subway within 150 m     Bus station within 150 m     % Major arterials within 400 m     Street segments within 400 m     4-way intersection |                                                                      | Distance to<br>downtown     Daily high<br>temperature >32°C | Total pedestrian<br>crossings at<br>intersections<br>over 8 count<br>hours (shorter<br>periods also<br>modeled) | Log-linear<br>(also used<br>Negative<br>binomial) | Counts at 20% of<br>the intersections<br>were compared<br>to a model based<br>on 80% of the<br>intersections for<br>validation |

#### **TABLE 1 Examples of Previous Pedestrian Intersection Volume Models**

| General information   |                                                                      |                                    | Pedestri                                                                                                                                                 | an count info                                                                                           | rmation                                                                      |                                                                                                                    | Statisti                                                                                                                                                                                                                           | Model information                                                                                                                                       |                                                                      |                                                             |                                                                                                                 |                                                   |                                                                                                                                |
|-----------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Model<br>Location     | Developed by                                                         | Intersections<br>Used for<br>Model | Pedestrian Count<br>Description                                                                                                                          | Type of Count<br>Sites                                                                                  | Count<br>Period(s) Used<br>for Model                                         | Weather<br>During Counts                                                                                           | Land Use                                                                                                                                                                                                                           | Transportation System                                                                                                                                   | Socioeconomic<br>Characteristics                                     | Other                                                       | Model Output                                                                                                    | Model<br>Type                                     | Validation Testing                                                                                                             |
| Charlotte, NC         | UNC Charlotte<br>(Pulugurtha &<br>Repaka 2008)                       | 176                                | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized<br>Intersections                                                                             | 7 am-7 pm                                                                    | Clearweather<br>conditions                                                                                         | Pop. within 0.25 mi.      Jobs within 0.25 mi.     Mixed land use within     0.25 mi.     Urban residential area     within 0.25 mi.                                                                                               | ✓Number of bus stops<br>within 0.25 ml.                                                                                                                 | >                                                                    |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 7 pm<br>(shorter periods<br>also modeled)     | Linear                                            | None reported                                                                                                                  |
| Alameda<br>County, CA | UC Berkeley<br>SafeTREC<br>(Schneider,<br>Arnold, &<br>Ragland 2009) | 50                                 | Pedestrians<br>counted every<br>time they crossed<br>a leg of the<br>intersection<br>(pedestrians<br>within 50 feet of<br>the crosswalk<br>were counted) | Signalized and<br>unsignalized<br>intersections                                                         | Tu, W, or Th:<br>12-2 pm or 3-5<br>pm; Sa: 9-11<br>am, 12-2 pm,<br>or 3-5 pm | All weather<br>conditions;<br>weather<br>adjustment<br>factors were<br>calculated<br>from<br>automated<br>counters | <ul> <li>Population within 0.5 mS</li> <li>Employment within 0.25 mL</li> <li>Commercial properties within 0.25 mL</li> </ul>                                                                                                      | • BART (regional transit)<br>station within 0.1 mi.                                                                                                     | >                                                                    |                                                             | Total pedestrian<br>crossings at<br>intersections<br>during a typical<br>week                                   | Linear                                            | 46 historic counts<br>used for<br>validation (30<br>additional<br>intersections<br>were counted for<br>validation in<br>2009)  |
| San Francisco,<br>CA  | San Francisco<br>State (Liu &<br>Griswold<br>2009)                   | 63                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>2:30-6:30 pm                                                     | Not reported                                                                                                       | <ul> <li>Population density (net)</li> <li>within 0.5 mi.</li> <li>Employment density<br/>(net) within 0.25 mi.</li> <li>Patch richness density<br/>within 0.063 mi.</li> <li>Residential land use<br/>within 0.063 mi.</li> </ul> | MUNI (light-rail transit)<br>stop density within 0.38<br>mi.<br>• Presence of bike lane at<br>intersection                                              |                                                                      | • Mean slope<br>within 0.063<br>mi.                         | Total pedestrian<br>crossings at<br>intersections<br>from 2:30-6:30<br>pm on typical<br>weekday                 | Linear                                            | None reported                                                                                                                  |
| Santa Monica,<br>CA   | Fehr & Peers<br>(Haynes et al .<br>2010)                             | 92                                 | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized and<br>unsignalized<br>intersections                                                         | Weekdays<br>5-6 pm                                                           | Not reported                                                                                                       | Employment density <<br>within 0.33 mi.     Within a commercially-<br>zoned area                                                                                                                                                   | <ul> <li>Afternion bus frequency</li> <li>Average speed limit on<br/>the intersection<br/>approaches</li> </ul>                                         | >                                                                    | Distance<br>from Ocean                                      | Total pedestrian<br>crossings at<br>intersections<br>from S-6 pm on<br>typical weekday                          | Linear                                            | Approximately<br>107 additional<br>Intersections<br>were counted for<br>validation                                             |
| San Diego, CA         | Alta Planning +<br>Design (Jones<br><i>et al.</i> 2010)              | 80                                 | Pedestrians<br>counted each<br>time they arrived<br>at the<br>intersection from<br>any direction                                                         | Signalized and<br>unsignalized<br>intersections<br>(includes<br>some<br>trail/roadway<br>intersections) | Weekdays<br>7-9 am                                                           | Nice weather                                                                                                       | Population density<br>within 0.25 mi.     Employment density<br>within 0.5 mi.     Presence of retail within<br>0.5 mi.                                                                                                            | <ul> <li>Greater than 6,000<br/>transit ridership at bus<br/>stops within 0.25 mi.</li> <li>4 or more Class I bike<br/>paths within 0.25 mi.</li> </ul> | More than 100<br>households<br>without<br>vehicles within<br>0.5 mi. |                                                             | Total pedestrians<br>approaching<br>intersections<br>from 7 am to 9 am                                          | Log-linear                                        | None reported                                                                                                                  |
| Montreal,<br>Quebec   | McGill<br>University<br>(Miranda-<br>Moreno &<br>Fernandes<br>2011)  | 1018                               | Pedestrians<br>counted each<br>time they crossed<br>a leg of the<br>intersection (no<br>distance to<br>crosswalk<br>specified)                           | Signalized<br>Intersections                                                                             | Weekdays 6-9<br>am, 11 am-1<br>pm, and 3:30-<br>6:30 pm                      | Most counts<br>during nice<br>weather;<br>weather<br>variables were<br>analyzed                                    | <ul> <li>Population within 400 mK</li> <li>Commercial space within 50 m</li> <li>Open space within 150 m</li> <li>Schools within 400 m</li> </ul>                                                                                  | Subway within 150 m     Bus station within 150 m     % Major arterials within 400 m     Street segments within 400 m     • 4-way intersection           |                                                                      | Distance to<br>downtown     Daily high<br>temperature >32°C | Total pedestrian<br>crossings at<br>intersections<br>over 8 count<br>hours (shorter<br>periods also<br>modeled) | Log-linear<br>(also used<br>Negative<br>binomial) | Counts at 20% of<br>the intersections<br>were compared<br>to a model based<br>on 80% of the<br>intersections for<br>validation |

#### Example: Development of the Alameda County Pedestrian Volume Model



Source: Schneider R.J., L.S. Arnold, and D.R. Ragland. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," Transportation Research Record 2140, pp. 13-26, 2009.

# Pedestrian Model Development

- Sample of intersections along arterial and collector roadways
- Pilot Model: April to June 2008 (N=50)
- Validation: April to June 2009 (N=30)





# **2008 Location Selection Process**

- All Possible Intersections = 7,466
- Choose 50 Intersections
  - Ensure a wide variety of characteristics are represented
  - Ensure a wide geographic distribution

#### Restrictions

- No intersections with low pop. density, no grade separated crossings, no intersections within ¼-mile of county line
- Include at least 2 trail/roadway crossings & 3 CBD intersections



# Pilot Model Pedestrian Volume Data

- Pedestrian crossings within 50 feet of each study intersection
- 2-hour manual counts (Weekday & Saturday)
- April to June 2008
- Counts extrapolated and adjusted for land use & weather









#### "Typical" Alameda County Pedestrian Activity Pattern



#### "Typical" Alameda County Pedestrian Activity Pattern


#### One study intersection: Martin Luther King Jr. Wy. & 17th St., Oakland



Approximately 5,600 pedestrian crossings per week (Spring 2008)

## Alameda County Pilot Model

**Estimated Weekly Pedestrian Crossings =** 

- 0.928 \* Total population within 0.5-miles of the intersection
- + 2.19 \* Total employment within 0.25-miles of the intersection
- + 98.4 \* Number of commercial properties within 0.25miles of the intersection
- +54,600 \* Number of regional transit stations within 0.10miles of the intersection
- 4910 (Constant)

Adjusted R<sup>2</sup> = 0.897 Root Mean Squared Error = 5760 Explanatory variables significant at 95% confidence interval



#### Alameda County Pedestrian Volume Forecasting Spreadsheet

#### **Pedestrian Intersection Crossing Volume Model**

Pilot Model--January 2009<sup>1,2</sup>

Developed by Robert Schneider, Lindsay Arnold, and David Ragland University of California Berkeley Safe Transportation Research & Education Center

| Intersection Identification |                      |         |                                                                   | Model Output                                         |                                                                       |                                                                                         |                                                                         |
|-----------------------------|----------------------|---------|-------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Mainline Roadway            | Intersecting Roadway | City    | Total <b>population</b><br>within 1/2-mile<br>radius <sup>3</sup> | Total <b>employment</b><br>within 1/4-mile<br>radius | Total number of<br>commercial<br>properties within<br>1/4-mile radius | Presence of <b>regional</b><br>transit station within<br>1/10 mile<br>(Yes = 1, No = 0) | Estimated<br>Pedestrian Crossings<br>in a Typical Week <sup>5,6,7</sup> |
| Telegraph Avenue            | 59th Street          | Oakland | 10270                                                             | 610                                                  | 27                                                                    | 0                                                                                       | 8542                                                                    |
|                             |                      |         |                                                                   |                                                      |                                                                       |                                                                                         |                                                                         |
|                             |                      |         |                                                                   |                                                      |                                                                       |                                                                                         |                                                                         |
|                             |                      |         |                                                                   |                                                      |                                                                       |                                                                                         |                                                                         |

NULUS

1. This is a revised version of the pilot model of weekly pedestrain volumes at 50 intersections in Alameda County, CA. The model has a good fit for the Alameda County study data

(adjusted-R<sup>2</sup>=0.900). Since the analysis was conducted on 50 intersections in Alameda County, CA, more research is needed to refine the model equation and determine the applicability of the results for other communities. The model equation is: Estimated pedestrian intersection crossings per week = 0.987 \* Total population within 0.5-miles of the intersection + 2.19 \* Total employment within 0.25-miles of the intersection + 71.1 \* Number of commercial retail properties within 0.25-miles of the intersection + 49,300 \* Number of regional transit stations within 0.10-miles of the intersection - 4850. Details of the study are provided in two papers: 1) Schneider, R.J., L.S. Arnold, and D.R. Ragland. "Extrapolating Weekly Pedestrian Intersection Crossing Volumes from 2-Hour Manual Counts," UC-Berkeley Traffic Safety Center, Transportation Research Record, 2010, and 2) Schneider R.J., L.S. Arnold, and D.R. Ragland. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," UC-Berkeley Traffic Safety Center, Transportation Research Record, 2010.

2. The pedestrian volume estimates produced by the model are intended for planning, prioritization, and safety analysis at the community, neighborhood, and corridor levels. Since the model provides rough estimates of pedestrian activity, actual pedestrian counts should be used for site-level safety, design, and engineering analyses.

3. The intersections selected for the study did not include intersections in areas with very low population densities (<50 people per square mile). Therefore, the model is not appropriate for intersections below this density threshold (i.e., the model does not apply if there are fewer than 64 people within a 1/2-mile radius).

4. The study of Alameda County, CA found that land use characteristics are the most important factors for predicting pedestrian activity. Roadway design factors, such as the presence of sidewalks, median crossing islands, curb radii, or pedestrian crossing signals may have minor effects on pedestrian volumes, but they are not as significant for predicting pedestrian activity. However, roadway design factors are critical for pedestrian safety and comfort. Roadways must be designed to accommodate pedestrians of all abilities, regardless of volume.

5. The model output is an estimate of the number of pedestrian crossings during a typical 168-hour week (with an average seasonal volume). Pedestrian crossings are counted each time a pedestrian crosses any leg of the intersection (e.g., one person is counted twice if they cross the east leg and then the south leg of an intersection). Pedestrians do not need to cross completely inside the crosswalk; they are counted if if they cross within 50 feet of the intersection.

6. The model may not perform well in locations close to special attractors, such as amusement parks, waterfronts, sports arenas, regional recreation areas, and major multi-use

#### Alameda County Pedestrian Volume Forecasting Spreadsheet

#### **Pedestrian Intersection Crossing Volume Model**

Pilot Model--January 2009<sup>1,2</sup>

Developed by Robert Schneider, Lindsay Arnold, and David Ragland University of California Berkeley Safe Transportation Research & Education Center

| Intersection Identification |                      |         |                                                                   | Model Output                                         |                                                                       |                                                                                                |                                                                         |
|-----------------------------|----------------------|---------|-------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Mainline Roadway            | Intersecting Roadway | City    | Total <b>population</b><br>within 1/2-mile<br>radius <sup>3</sup> | Total <b>employment</b><br>within 1/4-mile<br>radius | Total number of<br>commercial<br>properties within<br>1/4-mile radius | Presence of <b>regional</b><br><b>transit station</b> within<br>1/10 mile<br>(Yes = 1, No = 0) | Estimated<br>Pedestrian Crossings<br>in a Typical Week <sup>5,6,7</sup> |
| Telegraph Avenue            | 59th Street          | Oakland | 10270                                                             | 610                                                  | 27                                                                    | 0                                                                                              | 8542                                                                    |
| Telegraph Avenue            | 59th Street          | Oakland | 20540                                                             | 1220                                                 | 27                                                                    | 0                                                                                              | 20014                                                                   |
|                             |                      |         |                                                                   |                                                      |                                                                       |                                                                                                |                                                                         |
|                             |                      |         |                                                                   |                                                      |                                                                       |                                                                                                |                                                                         |

NULUS

1. This is a revised version of the pilot model of weekly pedestrain volumes at 50 intersections in Alameda County, CA. The model has a good fit for the Alameda County study data

(adjusted-R<sup>2</sup>=0.900). Since the analysis was conducted on 50 intersections in Alameda County, CA, more research is needed to refine the model equation and determine the applicability of the results for other communities. The model equation is: Estimated pedestrian intersection crossings per week = 0.987 \* Total population within 0.5-miles of the intersection + 2.19 \* Total employment within 0.25-miles of the intersection + 71.1 \* Number of commercial retail properties within 0.25-miles of the intersection + 49,300 \* Number of regional transit stations within 0.10-miles of the intersection - 4850. Details of the study are provided in two papers: 1) Schneider, R.J., L.S. Arnold, and D.R. Ragland. "Extrapolating Weekly Pedestrian Intersection Crossing Volumes from 2-Hour Manual Counts," UC-Berkeley Traffic Safety Center, Transportation Research Record, 2010, and 2) Schneider R.J., L.S. Arnold, and D.R. Ragland. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," UC-Berkeley Traffic Safety Center, Transportation Research Record, 2010.

2. The pedestrian volume estimates produced by the model are intended for planning, prioritization, and safety analysis at the community, neighborhood, and corridor levels. Since the model provides rough estimates of pedestrian activity, actual pedestrian counts should be used for site-level safety, design, and engineering analyses.

3. The intersections selected for the study did not include intersections in areas with very low population densities (<50 people per square mile). Therefore, the model is not appropriate for intersections below this density threshold (i.e., the model does not apply if there are fewer than 64 people within a 1/2-mile radius).

4. The study of Alameda County, CA found that land use characteristics are the most important factors for predicting pedestrian activity. Roadway design factors, such as the presence of sidewalks, median crossing islands, curb radii, or pedestrian crossing signals may have minor effects on pedestrian volumes, but they are not as significant for predicting pedestrian activity. However, roadway design factors are critical for pedestrian safety and comfort. Roadways must be designed to accommodate pedestrians of all abilities, regardless of volume.

5. The model output is an estimate of the number of pedestrian crossings during a typical 168-hour week (with an average seasonal volume). Pedestrian crossings are counted each time a pedestrian crosses any leg of the intersection (e.g., one person is counted twice if they cross the east leg and then the south leg of an intersection). Pedestrians do not need to cross completely inside the crosswalk; they are counted if if they cross within 50 feet of the intersection.

6. The model may not perform well in locations close to special attractors, such as amusement parks, waterfronts, sports arenas, regional recreation areas, and major multi-use

#### Alameda County Pedestrian Volume Forecasting Spreadsheet

#### **Pedestrian Intersection Crossing Volume Model**

Pilot Model--January 2009<sup>1,2</sup>

Developed by Robert Schneider, Lindsay Arnold, and David Ragland University of California Berkeley Safe Transportation Research & Education Center

| Intersection Identification |                      |         |                                                                   | Model Output                                         |                                                                       |                                                                                                |                                                                         |
|-----------------------------|----------------------|---------|-------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Mainline Roadway            | Intersecting Roadway | City    | Total <b>population</b><br>within 1/2-mile<br>radius <sup>3</sup> | Total <b>employment</b><br>within 1/4-mile<br>radius | Total number of<br>commercial<br>properties within<br>1/4-mile radius | Presence of <b>regional</b><br><b>transit station</b> within<br>1/10 mile<br>(Yes = 1, No = 0) | Estimated<br>Pedestrian Crossings<br>in a Typical Week <sup>5,6,7</sup> |
| Telegraph Avenue            | 59th Street          | Oakland | 10270                                                             | 610                                                  | 27                                                                    | 0                                                                                              | 8542                                                                    |
| Telegraph Avenue            | 59th Street          | Oakland | 20540                                                             | 1220                                                 | 27                                                                    | 0                                                                                              | 20014                                                                   |
| Telegraph Avenue            | 59th Street          | Oakland | 20540                                                             | 1220                                                 | 100                                                                   | 0                                                                                              | 25205                                                                   |
|                             |                      |         |                                                                   |                                                      |                                                                       |                                                                                                |                                                                         |

NULUS

1. This is a revised version of the pilot model of weekly pedestrain volumes at 50 intersections in Alameda County, CA. The model has a good fit for the Alameda County study data

(adjusted-R<sup>2</sup>=0.900). Since the analysis was conducted on 50 intersections in Alameda County, CA, more research is needed to refine the model equation and determine the applicability of the results for other communities. The model equation is: Estimated pedestrian intersection crossings per week = 0.987 \* Total population within 0.5-miles of the intersection + 2.19 \* Total employment within 0.25-miles of the intersection + 71.1 \* Number of commercial retail properties within 0.25-miles of the intersection + 49,300 \* Number of regional transit stations within 0.10-miles of the intersection - 4850. Details of the study are provided in two papers: 1) Schneider, R.J., L.S. Arnold, and D.R. Ragland. "Extrapolating Weekly Pedestrian Intersection Crossing Volumes from 2-Hour Manual Counts," UC-Berkeley Traffic Safety Center, Transportation Research Record, 2010, and 2) Schneider R.J., L.S. Arnold, and D.R. Ragland. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," UC-Berkeley Traffic Safety Center, Transportation Research Record, 2010.

2. The pedestrian volume estimates produced by the model are intended for planning, prioritization, and safety analysis at the community, neighborhood, and corridor levels. Since the model provides rough estimates of pedestrian activity, actual pedestrian counts should be used for site-level safety, design, and engineering analyses.

3. The intersections selected for the study did not include intersections in areas with very low population densities (<50 people per square mile). Therefore, the model is not appropriate for intersections below this density threshold (i.e., the model does not apply if there are fewer than 64 people within a 1/2-mile radius).

4. The study of Alameda County, CA found that land use characteristics are the most important factors for predicting pedestrian activity. Roadway design factors, such as the presence of sidewalks, median crossing islands, curb radii, or pedestrian crossing signals may have minor effects on pedestrian volumes, but they are not as significant for predicting pedestrian activity. However, roadway design factors are critical for pedestrian safety and comfort. Roadways must be designed to accommodate pedestrians of all abilities, regardless of volume.

5. The model output is an estimate of the number of pedestrian crossings during a typical 168-hour week (with an average seasonal volume). Pedestrian crossings are counted each time a pedestrian crosses any leg of the intersection (e.g., one person is counted twice if they cross the east leg and then the south leg of an intersection). Pedestrians do not need to cross completely inside the crosswalk; they are counted if if they cross within 50 feet of the intersection.

6. The model may not perform well in locations close to special attractors, such as amusement parks, waterfronts, sports arenas, regional recreation areas, and major multi-use



# Validation Analysis

- Compared pilot model estimated volume with "actual" volume at 30 intersections in 2009
  - Where did the Pilot model work well?
  - Where did the Pilot model overestimate volumes?
  - Where did the Pilot model underestimate volumes?
- Model tended to underestimate
- Issue with some negative predictions at lowvolume intersections

# 2009 Observed Volumes vs. Pilot Model Predictions



## Variation in Pedestrian Volumes



# Variation in Pedestrian Volumes

#### • 5 Control Intersections

|      | 2008 Weekly       | 2009 Weekly       |                     |                                 |
|------|-------------------|-------------------|---------------------|---------------------------------|
|      | Pedestrian Volume | Pedestrian Volume | Absolute Difference |                                 |
| ID # | based on Counts   | based on Counts   | (2009 - 2008)       | Percent Difference <sup>1</sup> |
| 50   | 315               | 310               | -5                  | 1.6%                            |
| 2650 | 15691             | 16113             | 422                 | 2.7%                            |
| 9179 | 8342              | 7429              | -913                | 12.3%                           |
| 9436 | 105297            | 88118             | -17179              | 19.5%                           |
| 499  | 5186              | 3448              | -1738               | 50.4%                           |

1) Percent difference is calculated using the smaller number as the base value. If the model value is greater than the actual value, the percent difference is calculated as (2009 - 2008)/2008. If the actual value is greater than the model value, the percent difference is calculated as (2008 - 2009)/2009.

#### Variation in "Typical" Alameda County Pedestrian Activity Pattern



# Variation in Pedestrian Volumes

- Time of day, weather, etc. (accounted for)
- Measurement error
- "Unexplainable" variation
  - Individual sickness, people walking for scenery, store sales, etc.
  - Not feasible to predict in a planning-level model
  - Require additional data and cost for small benefit



## Alameda County Revised Model

**Estimated Weekly Pedestrian Crossings =** 

- 0.987 \* Total population within 0.5-miles of the intersection
- + 2.19 \* Total employment within 0.25-miles of the intersection
- + 71.1 \* Number of commercial properties within 0.25miles of the intersection
- +49,300 \* Number of regional transit stations within 0.10miles of the intersection
- 4850 (Constant)

Adjusted R<sup>2</sup> = 0.900 Root Mean Squared Error = 5310 Explanatory variables significant at 93% confidence interval

#### Key Consideration for Applying Existing Pedestrian & Bicycle Volume Models

 Designed for estimating volumes at neighborhood, corridor, and community levels. Actual pedestrian counts should be used for site-level safety, design, and engineering analyses.



#### Application for Pedestrian Safety Analysis: San Francisco Pedestrian Volume Model



#### San Francisco Pedestrian Volume Model

| Dependent Variable = Natural Logarithm of Total Annual Pedestrian Intersection Crossings <sup>1</sup> |             |             |         |  |  |
|-------------------------------------------------------------------------------------------------------|-------------|-------------|---------|--|--|
|                                                                                                       | Recom       | mended N    | lodel   |  |  |
| Model Variables <sup>2</sup>                                                                          | Coefficient | t-value     | p-value |  |  |
| Total households within 1/4 mile (10,000s)                                                            | 1.81        | 2.12        | 0.040   |  |  |
| Total employment within 1/4 mile (100,000s)                                                           | 2.43        | 2.22        | 0.032   |  |  |
| Intersection is in a high-activity zone                                                               | 1.27        | 3.79        | 0.000   |  |  |
| Maximum slope on any intersection approach leg (100s)                                                 | -9.40       | -3.07       | 0.004   |  |  |
| Intersection is within 1/4 mile of a university campus                                                | 0.635       | 1.45        | 0.154   |  |  |
| Intersection is controlled by a traffic signal                                                        | 1.16        | 4.03        | 0.000   |  |  |
| Constant                                                                                              | 12.9        | 33.29       | 0.000   |  |  |
| Overall Model                                                                                         |             |             |         |  |  |
| Sample Size (N)                                                                                       | 50          |             |         |  |  |
| Adjusted R <sup>2</sup> -Value                                                                        |             | 0.804       |         |  |  |
| F-Value (Test value)                                                                                  | 34.         | 4(p < 0.00) | 1)      |  |  |

 The dependent variable is the natural logarithm of the annual pedestrian intersection crossing volume at each of the 50 study intersections. This represents the sum of all crossings on each approach leg within 50 feet of intersection. The annual volume estimate is extrapolated from a two-hour manual count taken in September 2009 or July-August 2010. The extrapolation method accounts for variations in pedestrian activity by time of day, day of week, weather, and land use.
All distances used to calculate the model variables are straight-line distances rather than roadway network distances.

Schneider, R.J., et al. "Development and Application of the San Francisco Pedestrian Intersection Volume Model" (2012)

#### Reported pedestrian crashes



#### Model-estimated pedestrian crossings



#### Highest Estimated Pedestrian Crash Risk



General Characteristics of Intersections with Highest Pedestrian Risk in SF

- Most were unsignalized intersections.
- Many were along multilane arterial roadways.
- Several were located near schools.
- Several were in areas with steep slopes.



## **Bicycle Intersection Volume Models**



San Diego County Bicycle Volume Model

**PM Peak Hour Intersection Volume =** 

BAM = -4.279 + 0.718 \* C + 0.438 \* ED

Where: BAM = Morning peak bicycle count C = Footage of Class I bicycle path within a quarter-mile ED = Employment density within a quarter-mile

R<sup>2</sup> = 0.474 Explanatory variables significant at 95% confidence interval

Source: Jones, M.G., S. Ryan, J. Donlan, L. Ledbetter, L. Arnold, and D. Ragland. Seamless Travel: Measuring Bicycle and Pedestrian Activity in San Diego County and its Relationship to Land Use, Transportation, Safety, and Facility Type, Prepared by Alta Planning & Design and UC Berkeley SafeTREC, California Department of Transportation Task Order 6117, 2010.

## San Diego County Bicycle Volume Model



Source: Jones, M.G. et al. Seamless Travel: Measuring Bicycle and Pedestrian Activity in San Diego County and its Relationship to Land Use, Transportation, Safety, and Facility Type, 2010.

#### Santa Monica Bicycle Volume Model

#### **PM Peak Hour Bicycle Intersection Volume =**

- + 10.97 \* Land Use Mix
- + 0.342 \* PM Bus Frequency
- 5.809 x 10<sup>-3</sup> \* Population Density Under Age 18
- + 5.581 \* Bike Network Score
- + 14.89 (Constant)

R<sup>2</sup> = 0.471 Explanatory variables significant at 95% confidence interval

Haynes, M. and S. Andrzejewski. "Santa Monica Bicycle & Pedestrian Demand Analysis," Presentation by Fehr & Peers Transportation Consultants, April 20, 2010

#### Alameda County Bicycle Volume Models

| Model                   | Model A: All Counts |                     | Model B: Weekday      |          | Model C: Weekend |          | Model D: Weekday Alt. |          |
|-------------------------|---------------------|---------------------|-----------------------|----------|------------------|----------|-----------------------|----------|
| Variable                | Coeff.              | St. Err.            | Coeff.                | St. Err. | Coeff.           | St. Err. | Coeff.                | St. Err. |
| Dependent Varia         | ble = 2-hr In       | ntersection Bic     | ycle Count            |          | - ML             | e is     | - 41 X.               |          |
| Constant                | 3.776               | 0.185***            | 3.899                 | 0.262*** | 3.652            | 0.255*** | -1.127                | 0.855    |
| NComPropT               | 0.024               | 0.007***            | 0.030                 | 0.010*** | 0.017            | 0.010*   |                       |          |
| BikeSym                 | 0.477               | 0.163***            | 0.437                 | 0.230*   | 0.517            | 0.225*** | 0.459                 | 0.269*   |
| InUCBDist               | -0.458              | 0.059***            | -0.546                | 0.083*** | -0.369           | 0.081*** |                       |          |
| SlopeH                  | -0.517              | 0.073***            | -0.659                | 0.103*** | -0.375           | 0.100*** | -0.470                | 0.117*** |
| CNRH                    |                     |                     |                       |          |                  |          | 4.634                 | 0.989*** |
| Count09                 | 0.811               | 0.127***            | 1.002                 | 0.180*** | 0.620            | 0.176*** | 1.036                 | 0.211*** |
| Overall Model           |                     | 104 - 40<br>12 - 12 | - 81 - 0<br>- 51 - 51 |          | - (8             |          |                       |          |
| Sample size (N)         | 162                 |                     | 81                    |          | 81               |          | 81                    |          |
| Adjusted R <sup>2</sup> | 0.505               |                     | 0.600                 |          | 0.386            |          | 0.450                 |          |
| F-test                  | 33.87***            |                     | 24***                 |          | 11.08***         |          | 17.38***              |          |

\* = significant at 90% (p < .10). Model variables are defined in Table 3.

Source: Griswold, J.B., A. Medury, and R.J. Schneider. "Pilot Models for Estimating Bicycle Intersection Volumes," Transportation Research Record, Transportation Research Board, 2011.

#### Alameda County Bicycle Volume Models

| Model .                                    | Model A: All Counts          |                                    | Model B: Weekday |             | Model C: Weekend |             | Model D: Weekday Alt |          |
|--------------------------------------------|------------------------------|------------------------------------|------------------|-------------|------------------|-------------|----------------------|----------|
| Variable                                   | Coeff.                       | St. Err.                           | Coeff.           | St. Err.    | Coeff.           | St. Err.    | Coeff.               | St. Err. |
| Dependent Varia                            | ble = 2-hr In                | tersection Bic                     | ycle Count       |             | 4                | in in       | 41 X                 |          |
| Constant                                   | 3.776                        | 0.185***                           | 3.899            | 0.262***    | 3.652            | 0.255***    | -1.127               | 0.855    |
| NComPropT                                  | 0.024                        | 0.007***                           | 0.030            | 0.010***    | 0.017            | 0.010*      |                      |          |
| BikeSym                                    | 0.477                        | 0.163***                           | 0.437            | 0.230*      | 0.517            | 0.225***    | 0.459                | 0.269*   |
| InUCBDist                                  | -0.458                       | 0.059***                           | -0.546           | 0.083***    | -0.369           | 0.081***    |                      |          |
| SlopeH                                     | -0.517                       | 0.073***                           | -0.659           | 0.103***    | -0.375           | 0.100***    | -0.470               | 0.117*** |
| CNRH                                       |                              |                                    |                  |             | -                |             | 4.634                | 0.989*** |
| Count09                                    | 0.811                        | 0.127***                           | 1.002            | 0.180***    | 0.620            | 0.176***    | 1.036                | 0.211*** |
| Overall Model                              |                              |                                    | $\searrow$       | 8 3         | - 1/8            | .3          | -18                  |          |
| Sample size (N)                            | 16                           | 2                                  | •                | Commerc     | ial prope        | erties with | nin 0.1 mile         | es       |
| Adjusted R <sup>2</sup>                    | 0.5                          | 05                                 | •                | Bicycle fac | cility on        | intersecti  | on approa            | ch       |
| F-test                                     | 33.87                        | 33.87***                           |                  |             |                  |             |                      |          |
| NOTE: Coeff. = co<br>* = significant at 90 | efficient and 0% ( p < .10). | Std. Err. = star<br>Model variable | es are           | Slope       |                  | . There y   |                      | 05);     |
|                                            |                              |                                    | •                | Roadway     | network          | connecti    | vity                 |          |

Source: Griswold, J.B., A. Medury, and R.J. Schneider. "Pilot Models for Estimating Bicycle Intersection Volumes," Transportation Research Record, Transportation Research Board, 2011.

#### **Common Bicycle Volume Model Variables**

- Presence of bicycle facilities (e.g., multi-use trails, bicycle lanes)
- Employment or population density
- Proximity to commercial areas



#### **Future Research**









# Conclusions

- Volume model uses: Planning, general risk analysis
- Location-based models have been developed recently
  - Simple regression equations with spreadsheet applications
  - Other methods are being explored (Portland, NCHRP, others)
- Community-specific models (No universal model yet)
- Planning-level accuracy
- Pedestrian models more common than bicycle



## **Questions & Discussion**



UC Berkeley Safe Transportation Research & Education Center (SafeTREC) www.safetrec.berkeley.edu

# Thank You!

#### ⇒ Archive at <a href="http://www.walkinginfo.org/webinars">http://www.walkinginfo.org/webinars</a>

- Downloadable and streaming recording, transcript, presentation slides
- ⇒ Questions?
  - E-mail David Ragland at davidr@berkeley.edu
  - E-mail John Bigham at jbigham@berkeley.edu
  - E-mail Robert Schneider at rjschneider@berkeley.edu



**PBIC Livable Communities Webinar Series** 

Pedestrian and Bicycle Information Center