

Off-Road Facilities Part II: Shared Use Path – Roadway Intersection Design

Presentation by: Eric Mongelli, P.E. Bill Schultheiss, P.E. October 23, 2012 Guide for the Development of Bicycle Facilities 2012 • Fourth Edition

LANE

FOLLOW THE CONVERSATION ON TWITTER

Toole Design Group is live tweeting this webinar

- Otooledesign
- #AASHTO #BikeGuide

Toole Design Group

@tooledesign

Toole Design Group is the nation's leading planning, engineering and landscape architecture firm specializing in bicycle and pedestrian transportation. http://tooledesian.com

U.S. Department of Transportation Federal Highway Administration

WEBINAR #6: OFF- ROAD FACILITIES PART 2: SHARED USE PATH DESIGN

- Today's Webinar
- Significant Expansion on Shared Use Path Design
 - Crossing Types
 - Crosswalk Context
 - Determining Control at Mid-block Crossings
 - Crossing Treatments
 - Sidepath Crossings
 - Restricting Motor Vehicle Access

FUTURE WEBINARS

- August 10: Overview
- August 22: Planning Chapter
- September 4: On-Road Bikeways Part I
 - Bike Lanes (including Intersections)
- September 18: On-Road Bikeways Part II
 - Shared lanes
 - Bicycle boulevards & signing
 - Signals

- October 9: Shared Use Paths
 - General design principles
 - Pathway geometry
- October 23: Shared Use Paths
 - Intersection Design
 - Mid-block crossings
- November 6: Bikeway Maintenance and Operation

DISCOUNT FOR WEBINAR PARTICIPANTS

http://www.walkinginfo.org/training/pbic/ AASHTO_Promo_Flyer.pdf

Link will be emailed to webinar attendees

U.S. Department of Transportation Federal Highway Administration

SOME BACKGROUND

⇒What is AASHTO?

Mission: "provides technical services to support states in their efforts to efficiently and safely move people and goods"

Some history

Last Guide – 1999, largely written in 96-98

- Survey to update Guide 2004
- Standards vs. guidance (Shall vs. should or may)
- Relationship between AASHTO Guide and the MUTCD
- Innovation vs. accepted practice

RELATIONSHIP TO OTHER MANUALS

 2009 MUTCD – FHWA
 2011 AASHTO Green Book
 Public Right-of-Way Accessibility Guidelines (PROWAG)
 2010 Highway Capacity Manual

JS. Department of Transportation Federal Highway Administration

AASHTOVS. NACTO GUIDE: EITHER/OR?

- ⇒ AASHTO covers paths + onroad bikeways
- AASHTO covers design comprehensively
- AASHTO covers many but not all innovations
- ⇒ NACTO is a source of information for solutions that are currently experimental

April 2011 Editio

Federal Highway dministration

DESIGN GUIDANCE OF GREEN BOOK

Share use path design generally follows principles of the "Green Book"

Design speeds

Geometric Principles

Intersection Sight Distance

U.S. Department of Transportation Federal Highway Administration

ENGINEERING JUDGMENT

"The treatments described reflect typical situations; local conditions may vary and engineering judgment should be applied."

CHAPTER 5 – DESIGN OF SHARED USE PATHS MAJOR CONTENT CHANGES

- New stand-alone chapter fills missing gaps in the old Guide
- Discusses crossing types:
 - Mid-block
 - Sidepath
 - Grade separated
- Selecting intersection control
- Assessing crossing treatments

INTERSECTION DESIGN PRINCIPLES

- Good Geometric Design
 - Right Angle/Short Crossings
 - Adequate Sight Lines
 - Flat/ Conspicuous Crossings
- Needs of Design Users
 - Pedestrians/Bicyclists
 - Motorists
- Applicability of Good Pedestrian Design
- Appropriate Right-of-Way Assignment

SHARED USE PATH – ROADWAY INTERSECTIONS

Should not only address cross-traffic movement

But also address...

Turning movements of cyclists entering & exiting path

Section Mid-block roadway crossings

- Outside the functional area of an adjacent intersection
- Can be considered a four-leg intersection
- Sidepath roadway crossings

ASH

 Within functional area of intersection
 Grade-separated

ederal Highway

Mid-block roadway crossings

Outside the functional area of an adjacent intersection

Can be considered a four-leg intersection

Sidepath roadway crossings

Within functional area of intersection
 Grade-separated

U.S. Department of Transportation Federal Highway Administration

e 5-13. Mid-Block and Sidepath Crossings Relative to Intersection Functional Area

Section Mid-block roadway crossings

- Outside the functional area of an adjacent intersection
- Can be considered a four-leg intersection
- Sidepath roadway crossings

ASH

Within functional area of intersection
 Grade-separated

ederal Highway

Mid-block roadway crossings

Sidepath roadway crossings

Paths with Sidewalks

Paths with Paths

U.S. Department of Transportation Federal Highway Administration

Off-F

CROSSWALK MUTUAL YIELDING CONTEXT

SMutual yielding

- Oriver must stop/yield to pedestrians in crosswalk
- Bicyclists/pedestrian must stop/yield to motorists if the motorist can't stop in time (can't disregard traffic)

CROSSWALK MUTUAL YIELDING CONTEXT

Legal Crossings

- Mid-block: marked crosswalks required to create legal ped x-ing
- Sidepath: crosswalks exists regardless of marking
- Consider state laws
 - How are bicyclists treated? (bicyclist = pedestrian in xwalk?)

U.S. Department of Transportation Federal Highway Administration

MUTUAL YIELDING IMPLICATIONS

Bicyclists vs. Pedestrians

- Cyclists can operate up to
 30 mph, desire momentum
- Pedestrians operate up to I2 mph

Mutual yielding

- Works well with pedestrians
- Doesn't work well where bicyclists approach at higher speeds

MID-BLOCK CROSSINGS

ΔΔ.5Η

ederal Hiahway

dministration

Off-Road Facilities Part II: Shared-Use Path Design

GEOMETRIC ALIGNMENT AND TERRAIN CONSIDERATIONS

U.S. Department of Transportation Federal Highway Administration

ASSESS ROADWAY CHARACTERISTICS (LANES, SPEED, VOLUMES)

Is a Signal Needed?

EVALUATE SIGHT TRIANGLES FOR YIELD CONTROL SCHENARIO

Consideration of Speed Differential of Each User:

- Approach speeds determined by fastest users:
 - Bicyclists (12-30mph)
 - Motorists (15-80mph)
- Departure speed determined by slowest users (typically pedestrian):
 - ⇒ 3.0 3.5 feet/second

DESIGN SPEED

- Old guide: minimum 20 mph design speed
- New guide: "No single design speed"
 - Consider users, terrain, path surface
 - Typically not lower than
 85th percentile (14 mph)
 - I8 mph on flat terrain

Federal Highway

Administration

Higher in hilly terrain, up to30 mph

EVALUATE SIGHT TRIANGLES FOR YIELD CONTROL SCHENARIO

Using adult bicyclist (fastest path user)

AASH O

Federal Hiahway

dministration

Using design speed of road for motorists

Objective: provide unobstructed view to allow user to slow or stop to avoid conflict

EVALUATE SIGHT TRIANGLES FOR YIELD CONTROL SCHENARIO U.S. Customary

AASH 🛛

Federal Highway

Administration

Table 5-8. Length of Path Leg of Sight Triangle

 $t_{e} = \frac{1.47V_{e} - 1.47V_{b}}{1.47V_{b}}$

EVALUATE SIGHT DISTANCE FOR STOP OR SIGNAL CONTROL

Approach leg determined by Stopping Sight Distance

Stop leg (departure) determined by stop location

Ideal sight lines provide sufficient view of crossing traffic to judge gaps (Highway Capacity Manual Calculation)

Adequate

ASH

Federal Highway

dministration

Inadequate

DETERMINE WHICH LEG HAS PRIORITY

Consider relative volumes, speeds, and system hierarchy

- Local street vs. regional trail
- High speed/low volume road vs. high volume trail
- Apply least restriction that is effective

ASH

ederal Highway

Administration

STOP CONTROLLED ROADWAY

YIELD CONTROLLED PATHWAY

EVALUATE SIGHT TRIANGLES TO PEDESTRIAN SIDEWALKS/CROSSINGS

Clear sight triangle at least 15 feet along walkway
 Provides 2.5 second reaction time for a pedestrian moving at up to 6 feet per second (running) to stop

ΔΔ.5Η

ederal Hiahway

dministration

Off-Road Facilities Part II: Shared-Use Path Design

CROSSWALK MUTUAL YIELDING CONTEXT

Legal Crossings

- Mid-block: marked crosswalks required to create legal ped x-ing
- Sidepath: crosswalks exists regardless of marking
- Consider state laws
 - How are bicyclists treated? (bicyclist = pedestrian in xwalk?)

U.S. Department of Transportation Federal Highway Administration

CROSSWALK

Crosswalks are recommended....

Further crossing treatments are recommended to complement marked crosswalks if speeds > 40 mph and 4 or more lanes of traffic with either:
 No raised crossing island & ADT > 12,000

A raised crossing island & ADT > 15,000

What are further crossing treatments?

CROSSING ISLANDS

- Lower crash rates
- Beneficial at:
 - High roadway volumes
 - Wide crossings
 - Crossing 3 or more lanes
- Widths
 - Minimum width: 6 feet
 - Preferred width: I0 feet
 - Consider platoons

	L = Taper Length X = 6 ft (1.8 m) min. W = Offset Width Y = 6 ft (1.8 m) min

U.S. Department of Transportation Federal Highway Administration

ADVANCE STOP OR YIELD LINES

Lower crash rates

Effective on multi-lane crossings

U.S. Department of Transportation Federal Highway Administration

WARNING SIGNS AND MARKINGS

Should not use where roadway is stop, signal, or yield controlled

CURB RAMPS

{Enter Module Name on Master Slide}

CURB RAMPS

{Enter Module Name on Master Slide}

SIGNALIZED AND ACTIVE WARNING CROSSINGS

- Reference MUTCD for guidance
- Signalized shared use path crossings: design for slowest user (pedestrian)
 Accessible push button
 Pedestrian signal timing
 Automated detection

AASHO

Federal Highway

Administration

SIGNALIZED AND ACTIVE WARNING CROSSINGS

Pedestrian hybrid beacon

SIGNALIZED AND ACTIVE WARNING CROSSINGS

Rapid flashing beacon

U.S. Department of Transportation Federal Highway Administration

SIGNALIZED AND ACTIVE WARNING CROSSINGS

Standard beacon

U.S. Department of Transportation Federal Highway Administration

SIDEPATH DESIGN

SIDEPATH GUIDANCE

- Consolidates discussion of SUP's adjacent to roadways – Clearly defines "sidepath"
 - Expands discussion of operational problems
 - Acknowledges reasons for building paths adjacent to roadways
 - Provides guidance on when and where these facilities are appropriate
 - Provides design guidance for those locations

SIDEPATH PROXIMITY TO PARALLEL ROAD

Based on Florida DOT research for path placement

- Roads speed limits > 50 mph, increase separation from roadway
- At lower speeds
 - Greater separation from road does not reduce crashes
 - Crossing should be close to the parallel roadway so motorists can better detect sidepath users

SIDEPATHS MAY BE CONSIDERED:

Adjacent road has high speeds and volumes and no practical alternatives for improving on-road conditions or adjacent routes

Sidepath is used for a short distance to connect:

Pathway segments

Local streets used as bicycle routes

Sidepath can be built with few roadway and driveway crossings

Sidepath can be terminated in a bicycle compatible location

SIDEPATH CROSSING CONSIDERATIONS

Must consider driver's attention in the intersection

- Where do drivers expect conflicting traffic?
- Where are the virtual "blind spots"?

Right turning Driver A is looking for traffic on the left. A contraflow bicyclist is not in the driver's main field of vision.

Left turning Driver B is looking for traffic ahead. A contraflow bicyclist is not in the driver's main field of vision.

Right turning Driver C is looking for left turning traffic on the main road and traffic on the minor road. A bicyclist riding with traffic is not in the driver's main field of vision.

U.S. Department of Transportation Federal Highway Administration

SIDEPATH CROSSING CONSIDERATIONS

Utilize access management techniques

U.S. Department of Transportation Federal Highway Administration

Section Mid-block roadway crossings

- Outside the functional area of an adjacent intersection
- Can be considered a four-leg intersection
- Sidepath roadway crossings

ASH

Within functional area of intersection
 Grade-separated

ederal Highway

SIDEPATH CROSSINGS SIGNALIZED INTERSECTION CONSIDERATIONS

Pedestrian vs. Bike Timing

- Designed for pedestrian walking speed and clearance interval
- Bicyclists often enter the intersection during the "Don't Walk" interval

Operations

concurrent or exclusive with turning vehicles

SIDEPATH CROSSINGS AT SIGNALIZED INTERSECTIONS

Pathway should be integrated into the intersection controls following principles of pedestrian crossings

SIDEPATH CROSSING COUNTERMEASURES

Signalized Crossings

- Consider fully protected left and right turns from the parallel street across the sidepath
- Prohibit right turns on red from the crossing roadway
- Consider a leading pedestrian interval or exclusive pedestrian phase

Uncontrolled Crossings

- Reduce speeds of path users
 & motorists at conflict points
- Consider design to reduce path user speeds
- Employ measures on adjacent road to reduce speeds
- Reduce frequency of driveways

U.S. Department of Transportation Federal Highway Administration

SPEED CONTROL ON PATHS

Introduces concept of using geometric design and traffic control to reduce user speeds, such as curvature

Recommends centerline stripe to reduce speeds and address conflicts

Depends on site specific context

RESTRICTING MOTOR VEHICLE ACCESS

- "The routine use of bollards...to restrict motor vehicle traffic is not recommended."
- "Barriers such as bollards, fences, or other similar devices create permanent obstacles...and can cause serious injury."

ederal Highway

dministration

RESTRICTING MOTOR VEHICLE ACCESS

BOLLARD CONSIDERATIONS

- If bollards are justified –
 design goals:
 - Retroreflectorized
 - Bikes can pass w/o dismounting
 - Provide adequate sight distance
 - Stripe an envelope at approach
 - Use flexible delineators
 - Vehicles should not be able to pass
 - Use an odd number of bollards
 - Set back min, 30 ft from road
 - Flush hardware in ground

ederal Highway

Administration

Follow the conversation: **@tooledesign** Off-Road Facilities Part II: Shared-Use Path Design

BOLLARD CONSIDERATIONS

- If bollards are justified design goals:
 - Retroreflectorized
 - Bikes can pass w/o dismounting
 - Provide adequate sight distance
 - Stripe an envelope at approach
 - Use flexible delineators
 - Vehicles should not be able to pass
 - Use an odd number of bollards
 - Set back min, 30 ft from road
 - Flush hardware in ground

ederal Highway

THANKYOU!

Contact information:

Eric Mongelli, P.E. Toole Design Group

emongelli@tooledesign.com

Bill Schultheiss, P.E. Toole Design Group

wschultheiss@tooledesign.com

Follow the conversation: **@tooledesign** Off-Road Facilities Part II: Shared-Use Path Design

Questions?

U.S. Department of Transportation Federal Highway Administration

FUTURE WEBINARS

- August 10: Overview
- August 22: Planning Chapter
- September 4: On-Road Bikeways Part I
 - Bike Lanes (including Intersections)
- September 18: On-Road Bikeways Part II
 - Shared lanes
 - Bicycle boulevards & signing
 - Signals

- October 9: Shared Use Paths
 - General design principles
 - Pathway geometry
- October 23: Shared Use Paths
 - Intersection Design
 - Mid-block crossings
- November 6: Bikeway Maintenance and Operation

U.S. Department of Transportation Federal Highway Administration

