Countermeasure Strategies for Pedestrian Safety Pedestrian Safety at Roundabouts

Hillary Isebrands Federal Highway Administration

January 6, 2016

Today's Presentation

Introduction and housekeeping

Audio issues? Dial into the phone line instead of using "mic & speakers"

- PBIC Trainings and Webinars www.pedbikeinfo.org/training
- Registration and Archives at pedbikeinfo.org/webinars
- ⇒ PBIC News and updates on Facebook www.facebook.com/pedbike
- ⇒ Questions at the end

Countermeasure Strategies for Pedestrian Safety Webinar Series Upcoming Webinars

Transit and Pedestrian Safety

Wednesday, January 20 (1:00 – 2:30 PM Eastern Time)

To view the full series and register for the webinars, visit www.pedbikeinfo.org/training/webinars_PSAP_countermeasurestrategies.cfm

WHY WELL DESIGNED ROUNDABOUTS WORK FOR PEDESTRIANS

Separated sidewalks direct peds to crosswalks

Splitter island

Slow speed exit

Truck apron

Crosswalk ~1 car length back Deflection = slow speeds throughout

Slow speed entry = yield

PEDESTRIAN ROUNDABOUT EXPERIENCE

- Low speeds (15-25mph)
- Fewer conflict points (16 to 8 ped-veh)
- Shorter crossing distances
- Cross only one direction of travel at a time

Source of Images: Seattle DO

PEDESTRIAN SAFETY

Belgium study*

- Converting an unsignalized intersection to a roundabout associated with 27% decrease in pedestrian crashes
- US experience
 - No existing comprehensive "before" and "after" crash data analyses
 - Surrogate safety metrics such as vehicle speed and yielding compliance can also be used
 - Multilane crossings still present a multiple threat challenge for pedestrians
 - Audible cues needed to assess gaps and judge vehicle yielding behavior are different as compared to orthogonal intersections

*De Brabander, B., & Vereeck, L. (2007). Safety Effects of Roundabouts in Flanders: Signal type, speed limits and vulnerable road users. *Accident Analysis & Prevention*, 39(3), 591-599.

SIGHT DISTANCE SPLITTER ISLAND CROSSWALKS

STOPPING SIGHT DISTANCE

Source: NCHRP 672, Roundabouts: An Informational Guide, 2nd Edition

STOPPING SIGHT DISTANCE

35

40

45

50

55

247.8

302.7

362.5

427.2

496.7

d = stopping sight distance, ft; t = perception–brake reaction time, assumed to be 2.5 s; V = initial speed, mph; and a = driver deceleration, assumed to be 11.2 ft/s².

SPEEDS AT CROSSWALK

Entry Curvature Slow entry R1

Slow circulating R2

Average vehicular speeds at ped crossing dictated by geometry acceleration rate of 4-7 ft/sec*sec and dist to crossings18 mph

66

SIGHT LINE TO EXIT CROSSWALK

Landscape consideration: <u>DO</u> <u>NOT</u> block sight line

Source: NCHRP 672, Roundabouts: An Informational Guide, 2nd Edition

SPLITTER ISLAND DESIGN GUIDANCE

- Typically raised
- Width minimum* of 6 ft at the crosswalk
- Typical crosswalk setback of 20 ft
 - Approx one vehicle length behind yield line
 - Lengths may vary between entrance and exit

* Minimum if a two-stage crossing

Source: NCHRP 672, Roundabouts: An Informational Guide, 2nd Edition

PEDESTRIAN DESIGN DIMENSIONS

User	Characteristic	Dimension	Affected Roundabout Features
Bicyclist	Length	1.8 m [6.0 ft]	Splitter island width at crosswalk
	Minimum operating width	1.2 m [4.0 ft]	Bike lane width on approach roadways; shared use path width
Pedestrian	Width	0.5 m [1.6 ft]	Sidewalk width, crosswalk width
Wheelchair user	Minimum width	0.75 m [2.5 ft]	Sidewalk width, crosswalk width
	Operating width	0.9 m [3.0 ft]	Sidewalk width; crosswalk width
Person pushing stroller	Length	1.7 m [5.6 ft]	Splitter island width at crosswalk
Skaters	Typical operating width	1.8 m [6.0 ft]	Sidewalk width

Source: 2011 AASHTO Green Book

ACCESSIBILITY AT ROUNDABOUTS IN THE UNITED STATES

EAGLE COUNTY, CO

ACCESSIBILITY RESEARCH AT ROUNDABOUTS

Blind pedestrians must master four principal tasks for crossing a street:

- 1. Finding the crosswalk & identifying the intended crossing location
- 2. Aligning to cross
- 3. Deciding when to cross
- 4. Maintaining alignment while crossing multiple lanes until the far side is reached

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Crossing Solutions at Roundabouts and Channelized Turn Lanes for Pedestrians with Vision Disabilities

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

RAISED CROSSWALK IN GOLDEN, CO

PEDESTRIAN HYBRID BEACONS IN GOLDEN, CO

PEDESTRIAN HYBRID BEACON PECOS/I-70 RAMP, DENVER, CO

FHWA EVALUATION OF RECTANGULAR RAPID FLASHING BEACONS AT MLR

TECHBRIEF

Evaluation of Rectangular Rapid-Flashing Beacons at Multilane Roundabouts

FHWA Publication No.: FHWA-SA-15-076

FHWA Contact: Jeffery Shaw, (708) 283-3524, Jeffery.Shaw@dot.gov

This document is a technical summary of the Federal Highway Administration Report, Accelerating Roundabout Implementation in the United States, Volume I: Evaluation of Rectangular Rapid-Flashing Beacons at Multilane Roundabouts (FHWA-SA-15-069)

The objective of this effort was to conduct field studies at multilane roundabouts with the goal of defining the region of feasibility for RRFBs at multilane roundabouts to provide guidance and data for practitioners(1) and the U.S. Access Board(2).

FHWA RRFB EVALUATION PERFORMANCE MEASURES – ACCESSIBILITY AUDIT

- Percent InterventionPedestrian Delay
- Free Flow Speed at Crosswalk
- Driver Yielding Rate at Crosswalk

Conceptual relationship between interventions and other factors

FHWA RRFB CONFIGURATION RESULTS AT ROUNDABOUTS

Based on this research, RRFB installations should

- In the installed as a two-stage crossing with separate devices for crosswalks on the roundabout's entry and exit legs
- In be installed on both ends of the crosswalk; both at the curb and at the splitter island
- In the installed to be as visible as possible to drivers, and the design should consider the brightness and orientation of the devices
- In need to be outfitted with audible devices with both a pushbutton locator tone and a speech message indicating when the yellow lights are flashing

RRFB IN AVON, CO

SIGNING & MARKING

VISIBILITY OF THE CROSSWALKS

- Proper signing is important
 - YIELD
 - Pedestrian Warning
 - Lane Use
- High visibility crosswalks are preferred
 Figure 3B-19. Estimate

PEDESTRIAN SIGNS SHOULD STAND OUT

LANDSCAPING

SIDEWALK BUFFERS

- Wherever possible, sidewalks should be <u>set back</u> from the edge of the circulatory roadway with a landscape strip
 - Discourages pedestrians from crossing to the central island or cutting across the circulatory roadway of the roundabout
 - Helps guide pedestrians with vision impairments to the designated crosswalks
- Landscape strips provide
 - Increased offset from traffic
 - Room for signs, street furniture and snow storage
 - Buffer to allow for the overhang of large vehicles as they navigate the roundabout

SIDEWALK BUFFERS

Overland Park, Kansas

SPLITTER ISLAND & APPROACH LANDSCAPING

- Avoid landscaping in the line of sight of crosswalks
 - Within critical visibility areas limit height to 2 ft

SPLITTER ISLAND & APPROACH LANDSCAPING

Hardscape treatments, patterned concrete or paver surface, may be used on splitter islands in lieu of landscaping

LIGHTING
PERIMETER LIGHTING

Pedestrians illuminatedSigns illuminated

PERIMETER ILLUMINATION

Maintenance of luminaires is easier

due to curbside location.

Perimeter Illumination Design

Advantages	Disadvantages
Illumination can be strongest	 Illumination is weakest in
around critical bicycle and	central island, which may limit
pedestrian areas.	visibility of roundabout from a
Continuity of poles and luminaires is maintained for the illumination of the lanes, as well as good visual guidance on the circulatory	 More poles are required to achieve the same illumination level.
roadway.	 Poles may need to be located in
Approach signs typically appear in	critical conflict areas to achieve
positive contrast and thus are	illumination levels and
clearly visible.	uniformity.

Source: NCHRP 672, Roundabouts: An Informational Guide, 2nd Edition

٠

CENTRAL ILLUMINATION

- Pedestrians visible only as silhouettes
- Signs not visible

ECOLUMINANCE STUDY – NY STATE/RPI

Figure 25. Plan view of the lighting layout.

Figure 21. Lighting elements that are used in the final lighting system.

Figure 22. Isometric view of the roundabout showing the lighting on the crosswalks, the landscape

IESNA LIGHTING LEVELS

Table 1. Illuminance Levels at Roundabouts and Other Intersections

Recommended Illuminance for Intersections					
Roadway Classification	Average Maintained Illuminance at Pavement ¹ Pedestrian/Area Classification			Uniformity Ratio (E _{avg} /E _{min}) ²	
(Street A/Street B)					
	High	Medium	Low		
	lux (fc)	lux (fc)	lux (fc)		
Major/Major	34.0 (3.2)	26.0 (2.4)	18.0 (1.7)	3.0	
Major/Collector	29.0 (2.7)	22.0 (2.1)	15.0 (1.4)	3.0	
Major/Local	26.0 (2.4)	20.0 (1.9)	13.0 (1.2)	3.0	
Collector/Collector	24.0 (2.2)	18.0 (1.7)	12.0 (1.1)	4.0	
Collector/Local	21.0 (2.0)	16.0 (1.5)	10.0 (0.9)	4.0	
Local/Local	18.0 (1.7)	14.0 (1.3)	8.0 (0.7)	6.0	

¹ fc = foot candles (conversion factor from lux to foot candles is 10.67.)

fc has been rounded to the nearest tenth

² E_{avg} = Horizontal Illuminance, E_{min} = Vertical Illuminance Source: ANSI / IESNA RP-8-00 Table 9

INFORMATIONAL REPORT ON LIGHTING DESIGN FOR MIDBLOCK CROSSWALKS

FHWA-HRT-08-053

- April 2008
- Available at <u>http://www.tfhrc.gov/s</u> <u>afety/pubs/08053/08</u> <u>053.pdf</u>

SAMPLE ILLUSTRATIONS FROM FHWA REPORT

Fig 11. Traditional midblock crosswalk lighting layout

Fig 12. New design for midblock crosswalk lighting layout

Recommended lighting level: 20 lux at 5' above pavement

CASE STUDY

CASE STUDY: ROUNDABOUTS (GREAT NECK PLAZA, NY)

Problem/Background

- Small, dense, suburban community on Long Island
- High pedestrian activity & older population
 - Busy central business district
 - High-use train station
- Excessive vehicle speeds

CASE STUDY: ROUNDABOUTS (GREAT NECK PLAZA, NY)

Solution

- City received traffic calming grant from state DOT
 - Goal: calm traffic, enhance visibility of pedestrians, & improve crosswalk safety
- 4-way STOP replaced by roundabout
 - Contrasting pavement color, curb extensions, fencing, and islands used to direct traffic
- Other locations: illuminated pedestrian crossings and speed awareness devices installed
- Cost: \$365,000 for the roundabout, \$275,000 for the other improvements

Before

CASE STUDY: ROUNDABOUTS (GREAT NECK PLAZA, NY)

Results

- Pedestrian collisions reduced near the roundabout <u>after</u> installation
- Users indicate a safer pedestrian environment
- Vehicle flow improved
- Effect of pedestrian crossing signs & speed warning devices not as good
- Officials and residents consider project a success

Speed awareness device installed at same time as roundabout

BICYCLISTS

BICYCLIST ROUNDABOUT EXPERIENCE

- Low speeds (15-25mph)
- Fewer conflict points
- Bicyclists can take the lane OR use bike ramp to exit to multi-use path and cross with pedestrians

BICYCLISTS AT ROUNDABOUTS

Photo credits: Isebrands

BIKE & PED PATH RINGS IN NETHERLANDS

https://bicycledutch.wordpress.com/2013/05/09/a-modern-amsterdam-roundabout/

SUMMARY & QUESTIONS

SUMMARY

- Low speeds (15-25mph)
- Fewer conflict points (16 to 8 ped-veh)
- Shorter crossing distances
- Cross only one direction of travel at a time

Thank You!

⇒ Archive at www.pedbikeinfo.org/webinars

- Downloadable/streaming recording and presentation slides
- ⇒ Questions?

webinars@hsrc.unc.edu

