Countermeasure Strategies for Pedestrian Safety

Pedestrian Hybrid Beacons

Richard Nassi
Pima Association of Governments

November 12, 2015
Today’s Presentation

- Introduction and housekeeping
- Audio issues?
 Dial into the phone line instead of using “mic & speakers”
- PBIC Trainings and Webinars
 www.pedbikeinfo.org/training
- Registration and Archives at
 pedbikeinfo.org/webinars
- PBIC News and updates on Facebook
 www.facebook.com/pedbike
- Questions at the end
Countermeasure Strategies for Pedestrian Safety Webinar Series

Upcoming Webinars

Leading Pedestrian Interval
Wednesday, December 2 (1:00 – 2:30 PM Eastern Time)

Pedestrian Safety at Interchanges
Thursday, December 10 (4:00 – 5:30 PM Eastern Time)

Lighting Strategies for Pedestrian Safety
Tuesday, December 15 (1:00 – 2:30 PM Eastern Time)

To view the full series and register for the webinars, visit
www.pedbikeinfo.org/training/webinars_PSAP_countermeasurestrategies.cfm
PEDESTRIAN HYBRID BEACON (PHB)
Understand why, when and where to use PHB
- Warrants
- Data needs
- PHB location/placement

Understand design and operation of PHB
- MUTCD Standards and Guidance

Understand who to educate & what messages to deliver
- Drivers
- Pedestrians and Cyclists
- Police

Describe unique PHB applications
- Bike Crossings/Roundabouts/Two-Stage PHBs/PUFFINs
side roads. Cross roads and side roads, however, are often so far apart that it is unreasonable to expect those wishing to cross to go to them and therefore there should be intermediate crosswalks located at reasonable distances apart. Crosswalks in the country should be marked by the crosswalk sign given in Part II. Ordinary signs are, however, not very effective at night unless they are provided with reflectors or are lighted and therefore on important highways this matter should be attended to. It would be valuable if there were some means of signalling to drivers at crosswalks, especially when motors are following close behind one another. I am inclined to think that some sort of semaphore arrangement might be designed which could be operated by pedestrians to signal motorists. The attention of traffic students is called to this matter in hopes that some one will find a practical solution.
- **1st HAWK** was in Tucson, AZ
 - Year 2000
 - Pedestrian safety program “Watching over the Pedestrian Like a HAWK”
- 2009 MUTCD adopted HAWK as Pedestrian Hybrid Beacon (PHB)
REMINDER ON HOW IT WORKS

1. Blank for drivers
2. Flashing yellow
3. Steady yellow
4. Steady red
5. Wig-Wag

MUTCD Section 4F.02 option RED clearance and change, buffer intervals allowed at intervals 4 and 5
WHY?
IMPROVED SAFETY
YIELD RATES EVEN HIGHER

Table 21. Summary of motorist yielding compliance from three sources for red signal or beacon and active when present.

<table>
<thead>
<tr>
<th>Crossing Treatment</th>
<th>TCRP D-08/NCHRP 3-71 Study</th>
<th>Other Studies Compliance – Literature Review (from Table L-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compliance – Staged Pedestrian Crossing</td>
<td>Compliance – General Population Pedestrian Crossing</td>
</tr>
<tr>
<td></td>
<td># of Sites</td>
<td>Range (%)</td>
</tr>
<tr>
<td>Midblock Signal</td>
<td>2</td>
<td>97 to 100</td>
</tr>
<tr>
<td>Half Signal</td>
<td>6</td>
<td>94 to 100</td>
</tr>
<tr>
<td>HAWK Signal Beacon</td>
<td>5</td>
<td>94 to 100</td>
</tr>
<tr>
<td>In-Roadway Warning Lights</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Overhead Flashing Beacon (Pushbutton Activation)</td>
<td>3</td>
<td>29 to 73</td>
</tr>
<tr>
<td>Overhead Flashing Beacon (Passive Activation)</td>
<td>3</td>
<td>25 to 43</td>
</tr>
</tbody>
</table>
YIELD RATES EVEN HIGHER

Obedience of the HAWK

- 97% Driver Compliance to RED
- 69% Pedestrian Crash Reduction
- 29% Total Crash Reduction
- 15% Reduction in Serious Crash Levels
- One of the Most Effective Pedestrian Crossing Devices

FHWA July 2010 study
CRF 69% pedestrian crashes
CRF 29% all crash types
CRF 15% all serious injury & fatal crashes

Pedestrians cross high speed, multilane roadways

Crossing doesn’t meet signal warrants

Crosswalk markings/signs just won’t do
- if there are any at all

Pedestrians complain or crash data shows a problem
Example:
- 35 mph
- 100 pph
- 750 vph
- 68 ft wide crossing

MEETS WARRANT
Figure 4F-2. Guidelines for the Installation of Pedestrian Hybrid Beacons on High-Speed Roadways

TOTAL OF ALL PEDESTRIANS CROSSING THE MAJOR STREET - PEDESTRIANS PER HOUR (PPH)

MAJOR STREET — TOTAL OF BOTH APPROACHES — VEHICLES PER HOUR (VPH)

* Note: 20 pph applies as the lower threshold volume
Standard:

- If used, PHBs shall be used in conjunction with signs and pavement markings to warn and control traffic.
- A PHB shall only be installed at a marked crosswalk.
Section 4F.02, paragraph 04

Guidance:

“When an engineering study finds that installation of a pedestrian hybrid beacon is justified, then the PHB should be installed at least 100 feet from side streets or driveways controlled by STOP or YIELD signs.”

“Guidance” not a “Standard”

NCUTCD voted to remove that Guidance.

Standard recommended for next MUTCD by NCUTCD:

“If a pedestrian hybrid beacon is installed at or immediately adjacent to an intersection with a side road, vehicular traffic on the side road shall be controlled by STOP signs.”
Prioritize warranted for consideration locations using a point system based upon:

- Traffic volume during the peak pedestrian crossing time
- Peak hour pedestrian volume
- Pedestrian crashes
- Crossing width (number of lanes)
- Distance to nearest controlled crossing
- Posted speed
- Presence of a raised median
- Crossing is a designated trail, school crossing, or SRTS walking route
- Presence of elderly or disabled pedestrians
- Others (lighting, curved roads, other unusual road conditions, etc.)
SELECTION OF PHB LOCATIONS

- Requires extensive data collection
 - Pedestrian counts can be time consuming
- Point weights and factors may vary from city to city
- Point weights and factors may be adjusted from year to year to fine-tune the process
- Ultimate selection of location(s) should be based on Engineering Judgment, not merely on points alone
Ped crashes (5 yrs)

Ped volume

Distance to nearest signal

Posted speed

AADT

Raised median

Path/sidewalk

Ped generator

Crossing width

Exhibit 640-A. PEDESTRIAN HYBRID BEACON (PHB) EVALUATION

<table>
<thead>
<tr>
<th>Location:</th>
<th>Date:</th>
</tr>
</thead>
</table>

1. Motor vehicle crashes correctable by installation of PHB – Award 5 points for each crash (for the most recent 5 years of data) involving pedestrians, bicyclists, wheel chairs, skateboards, motorized scooters, or golf carts crossing within 500 feet on either side of the proposed PHB locations, or half the distance to the nearest signal (whichever is less):

2. Peak hour pedestrian crossing volume – Award points if the average peak hour pedestrian crossing volume within 500 feet on either side of the proposed PHB location, or half the distance to the nearest traffic signal (whichever is less):

 - 0 points \Rightarrow 0 – 10 pedestrians per peak hour (average)
 - 2 points \Rightarrow 11 – 20 pedestrians per peak hour (average)
 - 4 points \Rightarrow 21 – 30 pedestrians per peak hour (average)
 - 6 points \Rightarrow 40* pedestrians per peak hour (average)

3. Location of nearest existing traffic signal or existing PHB – Award points:
 - 5 points \Rightarrow Less than 500 feet
 - 0 points \Rightarrow 500 – 1,000 feet
 - 5 points \Rightarrow Over 1,000 feet

4. Posted speed limit – Award points:
 - 0 points \Rightarrow Under 30 mph
 - 2 points \Rightarrow 30 – 35 mph
 - 4 points \Rightarrow 40 – 45 mph

5. Roadway traffic volume (AADT) – Award points:
 - 0 points \Rightarrow Less than 5,000
 - 2 points \Rightarrow 5,000 – 9,999
 - 4 points \Rightarrow 10,000 – 14,999
 - 6 points \Rightarrow 15,000

6. Raised median – Award 5 points if the roadway does not have a raised median with a minimum width of 6 feet.

7. Shared-use path or walkway – Award 5 points if a designated, maintained, and permitted shared-use path or walkway crosses the road at the proposed PHB location.

8. Pedestrian activity generator – Award 5 points if the proposed PHB location is within 500 feet of a senior center, medical facility, community center, school, or other pedestrian activity generator.

9. Roadway illumination – Award 5 points if the proposed PHB location does not have roadway illumination.

10. Crossing distance – Award 5 points if the crossing distance is greater than 36 feet. (If a raised median with a minimum width of 6 feet is present, the crossing distance is measured to the median)

GRAND TOTAL

Vehicle volumes should be obtained for the same peak crossing hours and need not be collected at the same time.

- Historic vehicle counts may be used if conditions are relatively unchanged.

Manual pedestrian counts are labor-intensive

- Consider using interns
- May be a high school or university class project
- Consider video data collection equipment
When an engineering study finds that installation of a PHB is justified, then:

A. Install at least two PHB faces for each major street approach

B. Install a stop line for each approach to the crosswalk
C. Install a pedestrian signal head at each end of the marked crosswalk, and

D. The PHB shall be pedestrian actuated
Standard:
A CROSSWALK STOP ON RED (symbolic circular red) (R10-23) sign shall be mounted adjacent to a PHB face on each major street approach.
Standard:
PHB indications shall be dark (not illuminated) during periods between actuations.

Upon actuation by a pedestrian, a pedestrian hybrid beacon face shall display a flashing CIRCULAR yellow signal indication, followed by a steady CIRCULAR yellow signal indication, followed by both steady CIRCULAR RED signal indications during the pedestrian walk interval, followed by alternating flashing CIRCULAR RED signal indications during the pedestrian clearance interval (see Figure 4F-3). Upon termination of the pedestrian clearance interval, the pedestrian hybrid beacon faces shall revert to a dark (not illuminated) condition. The PHB may remain in the dark condition for a short period of time before servicing the next actuation to allow for coordinated operation with nearby signals or to allow queued traffic to pass.

New anticipated proposed language in green:
Upon actuation by a pedestrian, a pedestrian hybrid beacon face shall remain dark until the display of a flashing CIRCULAR yellow signal indication, just before being followed by a steady CIRCULAR yellow signal indication, followed by both steady CIRCULAR RED signal indications during the pedestrian walk interval, followed by alternating flashing CIRCULAR RED signal indications during the pedestrian clearance interval (see Figure 4F-3). Upon termination of the pedestrian clearance interval, the pedestrian hybrid beacon faces shall revert to a dark (not illuminated) condition. The PHB may remain in the dark condition for a short period of time before servicing the next actuation to allow for coordinated operation with nearby signals or to allow queued traffic to pass.

Avoid overly long flashing YELLOW intervals – Allow queued traffic to pass before reactivation
Except at roundabouts:

- **Steady DON’T WALK** shall be displayed:
 - ✓ During PHB Blank-out
 - ✓ During Flashing or Steady CIRCULAR yellow
- **Steady WALK** shall be displayed during Steady CIRCULAR RED indications
- **Flashing DON’T WALK** shall be displayed during ALTERNATING FLASHING CIRCULAR RED
FHWA August 2011 Official Interpretation:

A steady RED clearance interval, in which the faces for the major street are Steady RED and the pedestrian signal faces are steady ORANGE UPRAISED HAND, may be inserted in the sequence of a PHB between the end of the steady YELLOW change interval and the start of the WALK interval for the pedestrian crosswalk.

The alternating flashing RED display on the PHB faces for the major street may be extended beyond the end of the flashing ORANGE UPRAISED HAND pedestrian change interval for a brief buffer interval before the major street faces return to the dark (non-illuminated) condition.
If used at an intersection or driveway, the PHB crossing and signal equipment should only control one crossing.

- ITE Traffic Control Devices Handbook
Vehicle signal indications only face major street.

STOP signs face the minor road.

Side street indications are **NOT** recommended. Experience suggests that drivers will most likely abuse a dynamic sign/signal’s indication (such as a RED signal or illuminated no turn sign) to push their way into the major street. (TCDH 2nd Edition)
RETROREFLECTIVE BORDERS ON BACKPLATES

- 2009 MUTCD - 4D.12, Paragraph 21 Option

- FHWA 9 Proven Countermeasures
 [http://safety.fhwa.dot.gov/provencountermearures/fhwa_sa_12_007.htm]

- CRF 15%
Use Ladder or Continental crosswalk markings (more visible)

- Consider advance PED XING pavement stencils
- Consider advance Ped warning signs (W11-2 or W11-15)
- Consider advance solid lane line on approach to stop line (approx. 250 ft)
Place advance stop lines generally 50 to 65 feet in advance of the PHB mast arms and consider STOP HERE ON RED sign at stopbar.

Consider Removing broken lane lines between advance stop line & crosswalk.
 - May Improve conspicuity of stop line & crosswalk.
Non-primary signs should not block driver’s view of the primary signs or signal heads.

MUTCD states they are optional “May” be used to clarify stopping location

STOP HERE ON RED sign is encouraged, but placement must be carefully selected.
DESIGN AND OPERATION ISSUES
LIGHTING BOTH SIDES OF CROSSING

Informational Report on Lighting Design for Midblock Crosswalks FHWA-HRT-08-053 April 2008

Fig 11. Traditional midblock crosswalk lighting layout

Fig 12. New design for midblock crosswalk lighting layout

Recommended lighting level: 20 lux at 5’ above pavement

Use APS buttons for universal accessibility (PROWAG-compliant)

- Make sure ramps exist and crossing is fully accessible

Click to play 3 sample locator tones

Click to play crossing message
Minimum Desirable WALK 5-7 seconds:
- Consider longer WALK interval during school arrival & dismissal times if used at a school crossing

Provide minimum vehicle “Go” time between PHB activations
- Some agencies use up to 50 seconds of “blank-out” time between PHB activations (Background cycle)
- 2013 ITE TCDH: recommends 15 to 45 seconds
- Minimum “blank-out” time between activations can be shorter during peak crossing times
 - Example - school arrival & dismissal times
Consider multiple timing plans if used at schools or other facilities with:

UNIQUE CROSSING PATTERNS, PEAK PEDESTRIAN Times
- PUFFIN is newer version of PHB in Tucson, AZ
- **Flashing RED** can be held longer to allow slower pedestrians to cross
- Sensors connected into the system monitor pedestrian crossing movements in crosswalk area
- Pedestrian clearance time for PHB based on 3.5 fps walking speed. PUFFIN timing allows the controller to extend the clearance time up to 3.0 fps crossing time
Some jurisdictions have reported drivers remain standing during the FLASHING RED indication. How to encourage drivers to proceed on FLASHING RED after pedestrians have crossed:

- Public education
 - Media (newspapers, traffic PSAs)
 - Pamphlets distributed or posted on websites
 - Video (PSAs or posted on agency websites)
- Special signs posted on PHB
ENCOURAGING DRIVERS TO PROCEED

Phoenix Sign*

*No Longer Needed in Tucson after many years of Service
MUTCD EXPERIMENTAL PROCESS

*Signs used around the Nation— No Longer Needed in City of Tucson after so many years of Service

http://mutcd.fhwa.dot.gov/condexper.htm
COORDINATION WITH ADJACENT SIGNALS

- Long delays for WALK signal most likely create pedestrian compliance issues, especially if natural gaps occur.
- Relatively quick WALK increases pedestrian compliance & encourages use of PHB.
- If the pedestrian crosses “early”, the motorist will be stopped for no reason, & will diminish respect for PHB.
- FLASHING RED interval keeps the delay to a minimum.
Decide what the beacon will display if a ‘conflict’ is detected:

- 2013, *ITE Traffic Control Device Handbook* - FLASHING YELLOW for “fail-safe” operation
- Some Cities use - Flashing RED to provides “fail-safe” operation
- Pedestrian signal should go ‘dark’ during conflict detection
EDUCATION
WISDOT - HOW TO USE A PEDESTRIAN HYBRID BEACON – LIVE ACTION
SPECIAL PROVISIONS PRIOR TO ACTIVATING THE PHB

- Educate Police
 - Most have never seen a PHB before & may not understand how they work
 - Police must know what constitutes a violation and relevant ordinance/law
 - Invite Police to activation for training
 - Use traffic police to train other officers
Obey the Signals at a Pedestrian Hybrid Beacon

The signals at a Pedestrian Hybrid Beacon (also previously known as a HAWK) remain off until a pedestrian presses a button. Motorists then see a **FLASHING YELLOW** indicating that they should prepare to stop, followed by a **SOLID YELLOW**, and then by a solid **RED** requiring motorists to **STOP**. The pedestrian then crosses the street. An **ALTERNATING FLASHING RED** means that motorists are required to STOP or remain stopped until the pedestrian finishes crossing the street.
SPECIAL PROVISIONS PRIOR TO ACTIVATING THE PHB

- Educational tools
 - Agency websites
 - School websites (if installed at a school)
 - Pamphlets, News Media
- Use local media - reporters always love a good story or breaking issue
- Videos played on agency websites or TV PSAs - mostly local cable
- Engage students and community groups in education effort
 - School class project
COST

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Description</th>
<th>Median</th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Cost Unit</th>
<th>No. of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Hybrid Beacon</td>
<td>Pedestrian Hybrid Beacon</td>
<td>$51,460</td>
<td>$57,680</td>
<td>$21,440</td>
<td>$128,660</td>
<td>Each</td>
<td>9 (9)</td>
</tr>
</tbody>
</table>

Source: Costs for Pedestrian and Bicyclist Infrastructure Improvements: A Resource for Researchers, Engineers, Planners, and the General Public, October 2013
TWO-STAGE PHB DOUBLE HAWK PEDESTRIAN CROSSING
SCOTTSDALE CASE STUDY
TWO-STAGE PHB

- Two-stage PHB used to reduced overall stopped time for crossing a wide street.
- Each crossing requires a far shorter clearance
- Can coordinate with two-direction traffic
- Requires fencing in the median to corral/guide pedestrians to both crossings
Connects two retail developments across a very busy 6-lane median divided arterial
- 47,000 ADT
- 6 Thru lanes, 2 Right turn lanes, Wide Median

Peak-hour “BEFORE” count was 23 crossings (“NO PEDESTRIAN CROSSING” signs were in place)

Peak-hour “AFTER” count there were nearly 400 crossings
SCOTTSDALE RD 2-STAGE PHB CROSSING

- 2 PHB crossings
 - Pedestrian Transfer by Effective Refuge On Displaced Area Controlled Through Yielding Lanes

70 ft

Scottsdale Rd
Some PHBs may be operated as TWO-STAGE crossings which allows for great efficiency for vehicles and less delay for pedestrians.

Staggering distance of Crosswalks may vary (Zegeer DPS 201)
ROUNDABOUTS & PHB
Public Right-of-Way Accessibility Guidelines (PROWAG)

Potentially at all multilane roundabouts
Option:

- If installed at a roundabout and an engineering study determines that pedestrians without visual disabilities can be allowed to cross the road without actuating the PHB, the pedestrian signal may be dark (not illuminated) when the PHB faces for motorists are dark.
PHB BIKE APPLICATION (BIKEHAWK)
Design matches how cyclists actually currently use the PHB crossing
BIKEHAWK AT PHB CROSSINGS

Normal PHB with Bike Facilities and R9-5 for cyclists to use pedestrian signals
PHB AT BIKE CROSSINGS

Provide actuation devices that are accessible to bicyclists with R9-5 sign

Compliance is in the 90% range & near 100% with families and children
PHBs SERVE THE COMMUNITY

- Balance of needs between the various modes of travel and neighborhoods
- High compliance rates
- Support from the community
- Can be designed to serve “special service” needs
- Gets everyone home safe and sound
Positive News Coverage

“I feel safer now that they have put these lights in”
Jocelyn Mora – KGUN 9 On Your Side
The Living Streets Alliance, Tucson’s bicycle and pedestrian advocacy organization has indicated that:

“The BikeHAWK helps unite neighborhoods and connect destinations for all modes of safe travel. Already, we’ve seen families and younger riders, both escorted and unescorted, using the BikeHAWK. This use emphasizes the safe connectivity of all levels of bicyclists across multi-lane, high speed roadways.”

Emily Yetman, Executive Director, Living Streets Alliance
GOAL: PHBs HELP GET EVERYONE HOME SAFE AND SOUND!
QUESTIONS
Thank You!

- Archive at www.pedbikeinfo.org/webinars
 - Downloadable/streaming recording and presentation slides
- Questions?
 webinars@hsrc.unc.edu

PBIC Webinar www.pedbikeinfo.org