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Abstract

There are about 75,000 pedestrian crashes in the United States each year. Approximately 5000 of these crashes are fatal, accounting for
12% of all roadway deaths. On college campuses, pedestrian exposure and crash-risk can be quite high. Therefore, we analyzed pedestrian
crashes on the campus of the University of North Carolina at Chapel Hill (UNC) as a test case for our spatially-oriented prototype tool
that combines perceived-risk (survey) data with police-reported crash data to obtain a more complete picture of pedestrian crash-risk. We
use spatial analysis techniques combined with regression models to understand factors associated with risk. The spatial analysis is based
on comparing two distributions, i.e. the locations of perceived-risk with police-reported crash locations. The differences between the two
distributions are statistically significant, implying that certain locations on campus are perceived as dangerous, though pedestrian crashes
have not yet occurred there, and there are actual locations of police-reported crashes that are not perceived to be dangerous by pedestrians
or drivers. Furthermore, we estimate negative binomial regression models to combine pedestrian and automobile exposure with roadway
characteristics and spatial/land use information. The models show that high exposure, incomplete sidewalks and high crosswalk density
are associated with greater observed and perceived pedestrian crash-risk. Additionally, we found that people perceive a lower risk near
university libraries, stadiums, and academic buildings, despite the occurrence of crashes.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

On average, a pedestrian injury occurs every 6 min and
a pedestrian fatality occurs every 107 min in the United
States (NHTSA, 2000). The 4906 pedestrian fatalities in
1999 accounted for approximately 12% of highway deaths
that year (BTS, 1999). Yet, this fact may inspire little local
action until a serious pedestrian injury or fatality occurs in
a neighborhood, in a specific commercial area, or on a col-
lege campus. One of the 4906 pedestrian fatalities of 1999
occurred in November on the campus of the University of
North Carolina at Chapel Hill (UNC) when a post-doc was
struck by an automobile while trying to cross Manning
Drive near the hospital. As a result, student rallies were
held, a series of pedestrian safety articles ran in local papers,
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and a Pedestrian Safety Committee, with members from
UNC, the Town of Chapel Hill, and the North Carolina De-
partment of Transportation was formed. Yet, this response
was reactive rather than proactive. Though no fatalities had
occurred to focus attention on pedestrian safety during the
previous 5 years, the 57 pedestrian crashes that had been
reported on campus could have indicated safety problems.
In addition, pedestrians and drivers who used the UNC
Campus roadways each day could have suggested locations
where pedestrian safety problems existed. To prevent future
fatalities, proactivemethods are needed to identify where
pedestrian problems exist and what types of factors are
related to pedestrian crash-risk on campuses, in neighbor-
hoods, in commercial areas, and all other areas where people
walk.

1.1. Objective

This study has two objectives. First, to determine if per-
ception data can add important information for a proactive
approach to crash avoidance. This is accomplished by first
demonstrating that there is a difference between the locations
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Fig. 1. Outline of method.
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of perceived high-risk areas and the locations of actual re-
ported crash data. If the two point patterns are from two dif-
ferent spatial distributions then we may safely assume that
perception data could add some important information about
the environmental factors associated with pedestrian-auto
crashes, such as roadway features, exposure, etc. It is likely
that the locations of both actual and perceived pedestrian
risk depend on a combination of physical/environmental, as
well as, individual factors. Physical/environmental factors
include the presence of sidewalks, traffic, and roadway cross-
ings, while individual factors include the ability to judge dis-
tance and speed, visual capabilities, and the physical ability
to move quickly and change direction.

Our second objective is then to analyze the factors from
both geographic distributions through a regression analysis.
Our analysis focuses on several specific, measurable phys-
ical/environmental factors that can be changed through en-
gineering, education, and enforcement policies to improve
pedestrian conditions (prevent crashes and improve percep-
tions of safety). Therefore, the methodology outlined in this
paper could be used by decision makers as a tool to se-
lect appropriate pedestrian crash countermeasures at key lo-
cations (Fig. 1). By including the factors from perceived
high-risk locations we are taking a proactive approach that
might avoid an accident “waiting to happen.”

2. Previous safety research on perception and
spatial analysis

A number of studies have used mapped data to analyze
transportation safety problems, but relatively few have in-
corporated perception data and spatial statistics to show dif-
ferences between actual and perceived-risk. The literature
addressing these topics is reviewed below and summarized
in Table 1.

Most studies use only police-reported crash data, yet
many suggest that perception may also affect pedestrian
crash-risk (Schneider et al., 2001; Karim, 1992; Duncan
et al., 1999; Austin et al., 1995; Butchart et al., 2000; Landis
et al., 2001). Butchart et al. use perception to examine
the implications for crash prevention. They find that peo-
ple believe inadequate signage, inadequate traffic lights,
and alcohol involvement to be associated with pedestrian
crashes and that increased enforcement and traffic calming
can help prevent these crashes. Landis et al. ask pedestrians
to rate their level of comfort on roadway segments to de-
velop a Pedestrian Level of Service Model. They find that
pedestrians feel greater comfort when a sidewalk is present,
when the sidewalk is wider and further from traffic, when
on-street parking or a line of trees is present, and when
there are lower vehicle speeds and volumes.

Karim finds that campus road users are able to rank spe-
cific locations correctly according to crash frequency. Yet,
perceiving high-risk areas may not be so easy or reliable.
Austin, Tight, and Kirby report that parents of school chil-

dren misjudge locations with high crash-risk along their
children’s walking routes to school. This finding is sup-
ported by Duncan, Khattak, and Hughes who showed that
distinguishing between crash and non-crash sites involving
“walking along roadway” crashes is difficult, even for safety
experts. In a pre-cursor study, Schneider et al. found mixed
results. Four clusters of police-reported pedestrian crashes
were identified on the UNC Campus. Campus pedestrians
and drivers perceived only two of these locations as dan-
gerous, while they believed that there was high pedestrian
crash-risk at two additional locations where no crashes had
been reported recently.

Discrepancies among these studies could be the result of
Karim giving survey participants a finite set of locations to
choose from, Austin, Tight, and Kirby analyzing dangerous
locations from open-ended responses, and Schneider et al.
allowing survey participants to mark any location on a study
area map.

The relationship between risk taking and driving behav-
ior has also been explored (Näätänen and Summala, 1976;
Wilde, 1994; Burns and Wilde, 1995; Hino et al., 1996;
Summala, 1996; Ward and Wilde, 1996; Wilde et al., 1998).
Much of this mildly research supports Risk Homeostasis
Theory, which states that people try to maintain a target
level of risk that maximizes the difference between the per-
ceived benefits and perceived costs of a behavioral choice.
For example, when lateral sight distances were increased at
a railroad crossing, drivers perceived less risk and therefore
traveled at faster speeds approaching the crossing (Ward and
Wilde, 1996).

To further explore the relationship between actual and
perceived-risk of pedestrian crashes while incorporating en-
vironmental effects, this study also draws on new technolo-
gies and methods of spatial analysis. A variety of studies in
recent years have addressed the issue of safety analysis us-
ing Geographic Information Systems (GIS). Specific uses of
GIS range from simple crash plotting, or geocoding, crash
locations (Levine et al., 1995; Kim et al., 1995; Hank Mohle
and Associates, 1996; Peled et al., 1996; Chu et al., 1999;
Miller, 2000; NCCGIA, 2000), to spatial queries that iden-
tify the locations of broadside, head-on, and rear end auto
crashes (Hank Mohle and Associates, 1996) or that show a
geocoded accident database can generate separate plots for
bicycle crashes and pedestrian crashes (NCCGIA, 2000), to
using GIS to identify spatial clusters of crashes through ker-
nel density estimation (Levine et al., 1995; Kim et al., 1995;
NCCGIA, 2000; Schneider et al., 2001).

Levine et al. compare the distribution of crashes at differ-
ent times during the day and week, with different levels of
injury severity, and with and without alcohol involvement,
and take spatial analysis one step further by generating stan-
dard deviational ellipses showing the spatial distribution of
crashes with different characteristics. The mapping of these
ellipses allows the difference between the point pattern of
one crash type and the point pattern of another crash type
to be tested for statistical significance.
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Table 1
Summary of literature

Author(s) Overall findings Methodology used Key findings/recommendations

Studies using GIS spatial analysis
Braddock et al. (1994) GIS can provide information that is useful for

understanding child pedestrian crashes
Crash plotting; cluster analysis; query by date
and time of crash, environmental conditions,
pedestrian/driver age and sex, injury severity
(N = 358)

107 of 358 crash sites (30%) were located
within two major clusters; Crashes in one
cluster tended to involve children that were
older and more likely to be seriously or fatally
injured

Chu et al. (1999) GIS can be designed to identify and rank
crash locations for the most effective use of
safety funds

Identification of high accident locations
through clustering techniques; query by crash
type, injury severity, time of day

GIS is a tool that can increase productivity in
data collection, integrate crash data with
roadway and traffic data, and display results
graphically to enhance agencies’
decision-making capabilities

Hank Mohle and Associates (1996) GIS can generate maps of automobile crash
rates and help analyze crash types

Segment analysis by crash rate; query by crash
type, time of day, injury severity, ped/bike
involvement

Several streets in San Joaquin County, CA were
identified as having a higher risk of auto crashes

Kim et al. (1995) GIS tools can help identify causes of crashes
and characteristics of individuals involved

Moped crash plotting (N = 240) Spatial patterns help identify intersections,
roadways, and districts where improving
signalization, widening roadways, or changing
traffic speeds can reduce moped crashes

Levine et al. (1995) Spatial analysis can help identify patterns of
different crash types and different levels of
injury severity

Crash plotting; spatial query by time of day,
day of week, alcohol involvement, injury
severity, number of vehicles involved, type of
impact; calculation of nearest neighbor index
and standard deviational ellipse (N = 19,208)

Employment density is a predictor of crash
concentration; Residential locations and
alcohol crashes are correlated; Crashes with
injuries and fatalities were more
widely-dispersed than other crashes

McMahon (1999) GIS can be used to analyze pedestrian
crash-risk

Comparison of walking along roadway crash
and non-crash sites using binary logistic
regression (N = 141); cluster analysis
comparing 3 neighborhoods

Older neighborhoods and neighborhoods with
more single parent families and unemployment
were more likely to be crash sites

Miller (2000) GIS is a useful tool for analyzing geographic
context of crashes

Case study of applying GIS to analyze crash
data in central Virginia and literature review

Techniques such as spatial query, segment
analysis, buffering, and cluster identification
can be used to improve crash analysis

NCCGIA (2000) GIS methods can be used to make practical
decisions

Route planning; cluster analysis to identify
high ped/bike crash zones; query by ped/bike
involvement

Large search radii can identify clusters over
large zones while smaller radii can show crash
clusters on road segments and intersections

Peled et al. (1996) GIS is a useful tool for analyzing geographic
context of crashes

Explanation of GIS database for analyzing
automobile crashes within a locational context

Maps provide a clear impression of crash
distribution and concentrations; Maps present
neighboring streets and land uses along with
crash locations

Schneider et al. (2001) Perception data can be used to identify
pedestrian problems and help select locations
for proactive safety treatments

GIS analysis of pedestrian crash locations
reported between 1994 and 1999 (N = 57) and
locations perceived to be dangerous for
pedestrians (N = 1835) by 110 drivers and
322 pedestrians on the UNC Campus

Reported pedestrian crashes were concentrated
in four locations on campus, while only two of
these locations were identified by survey
participants; Drivers and pedestrians perceived
a high pedestrian risk at two locations that
were not identified through reported crash maps
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Table 1 (Continued)

Author(s) Overall findings Methodology used Key findings/recommendations

Studies incorporating perception
Austin et al. (1995) Parents do not perceive dangerous walking

locations correctly
Simple analysis of parental survey that
identified locations of safety concern on kids’
routes to school (N = unreported)

Unsafe locations identified in parental
comments did not correspond closely to
reported accident locations

Butchart et al. (2000) Perception of pedestrian injury risk can be
used for crash prevention

Survey of households in six neighborhoods in
a low income area of Johannesburg, South
Africa (N = 1075)

Inadequate signage, traffic lights+ alcohol
involvement were perceived as pedestrian risk
factors; Increased enforcement+ traffic
calming were perceived as preventative
measures

Duncan et al. (1999) Perception of safety is difficult, even for experts Delphi process in which five pedestrian safety
experts attempted to identify crash sites from
among those with and without crashes (N
= 147)

Professionals had difficulty determining crash
sites based only on visible physical roadway
characteristics

Harrell (1991) Expectations affect driver detection of
pedestrians

Citation of 1985 study by Shinar Drivers detected pedestrians at night more often
when pedestrian encounters were expected

Karim (1992) Road users are aware of accident-prone
locations on campus

Simple statistical analysis of survey responses
regarding accident-prone locations (N
= unreported)

Road users ranked specific locations correctly
in terms of crash frequency on survey

Landis et al. (2001) The comfort level of pedestrians on roadway
segments with different characteristics can be
modeled to create a pedestrian level of service

Stepwise multivariate regression estimated
effect of sidewalk presence, lateral separation
of pedestrians from roadway traffic, driveway
frequency, and vehicle mix, volume and speed
on pedestrian comfort (N = 74 participants,N
= 1250 observations,N = 42 directional
roadway segments)

Pedestrian convenience and comfort increase
when a sidewalk is present, when the sidewalk
is wider and further from traffic, when on-street
parking or a line of trees is present, and when
there are lower vehicle speeds and volumes

Schneider et al. (2001) Perception data can be used to identify
pedestrian problems and help select locations
for proactive safety treatments

GIS analysis of pedestrian crash locations
reported between 1994 and 1999 (N = 57) and
locations perceived to be dangerous for
pedestrians (N = 1835) by 110 drivers and
322 pedestrians on the UNC Campus

Reported pedestrian crashes were concentrated
in four locations on campus, while only two of
these locations were identified by survey
participants; Drivers and pedestrians perceived
a high pedestrian risk at two locations that
were not identified through reported crash maps

N: sample size.
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2.1. Gaps in the literature

We found no studies that: (a) use quantitative spatial
tests to identify clusters of pedestrian crashes; (b) per-
form inter-distributional spatial tests to show the difference
between police-reported crash locations and locations per-
ceived to have a high crash-risk; (c) estimate appropriate
rigorous models to identify factors associated with pedes-
trian crash-risk; or (d) examine the effect of pedestrian
exposure on pedestrian crash-risk.

This study attempts to fill some of these gaps by utilizing
GIS and spatial analysis capabilities to analyze the spatial
distribution of both actual and perceived pedestrian crash

Fig. 2. UNC-Chapel Hill land use (January 2001).

locations, and then to determine which environmental fac-
tors, including nearby land uses, may have an effect on their
occurrence.

3. Description of study area and data collection

Our technique of integrating police-reported crash data
with perception survey data was tested on the campus of
the University of North Carolina at Chapel Hill, a 300-ha
(740-acre) area that is home to over 23,000 students, 2800
faculty, and many other employees (Peterson’s, 2000). The
geographic distribution of land uses on the UNC Campus
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makes the campus an excellent area to study the spatial re-
lationships between pedestrian problems and pedestrian and
vehicle flows, development character, and activity destina-
tions. Like many other college campuses, the UNC Campus
streets contain a mix of pedestrians, bicycles, and automo-
biles. Conflicts between pedestrians and vehicles occur as

Fig. 3. Reported pedestrian crash density (UNC-Chapel Hill, 1994–1999).

people travel to class, dining, personal recreation, sporting
events, and other activities (Fig. 2).

The method developed in this study may improve safety
for the 14.5 million students and 2.7 million faculty, staff,
and other employees associated with colleges in the United
States (more than 6% of the US population) and 90 million
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college students and teachers worldwide, many of whom
walk on campuses (US Department of Education, 2000).
In addition, the method presented here can be applied to
neighborhoods, commercial areas, and other locales with
large numbers of pedestrians.

3.1. Spatial data

There were 57 police-reported collisions between vehi-
cles and pedestrians on the UNC Campus between October
1994 and September 1999. Reports for each of these crashes
were extracted from the state crash database and the crash

Fig. 4. Perception of pedestrian crash-risk (locations perceived to have a high-risk of pedestrian crashes by pedestrians and drivers on UNC-ChapelHill
Campus).

locations were geocoded on a GIS map with an accuracy
of better than 30 m (100 ft) (this was the level of measure-
ment accuracy used in the police reports). UsingCrimeStat,
a spatial statistics software package (Levine, 1999), the data
revealed four main clusters of crashes.Fig. 3 shows these
clusters and the density of crashes associated with them as
determined through kernel estimation.

A perception survey was also designed to gather addi-
tional data about locations where pedestrian safety problems
could exist on campus. Four hundred fifty pedestrian sur-
veys were mailed to a random list of students, faculty, and
other employees, and 510 driver surveys were mailed to a
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random list of people with campus parking permits. Over
21% of each group responded. Two hundred fifteen extra
pedestrian surveys were given in person at five locations on
campus. Though people may have been more likely to mark
locations near where the surveys were distributed, pedes-
trians were over-sampled to ensure that people who walk
in all areas of campus were selected. Because it was likely
that most pedestrian survey participants had also driven on
campus and that most people taking the driver survey had
also walked on campus, the pedestrian survey participants
were instructed to complete the survey from their perspec-
tive as a pedestrian, and driver survey participants were
asked to complete the survey from their perspective as a
driver. In all, 312 pedestrian and 110 driver surveys were
analyzed.

The surveys included two identical maps of the cam-
pus area. Participants used the first map to mark the three
locations that they believed had the highest risk of pedes-
trian crashes during daylight. If participants felt that the
risk of pedestrian crashes on campus changed at night,
they marked the three locations with the highest risk of
pedestrian crashes during darkness on a second map. This
number of locations was required so that there would be
adequate variation in locations if all respondents agreed
that one location was the most dangerous point on campus,
and that the number of locations would be small enough
for respondents to think of and mark on the survey quickly.
Yet, some respondents still marked only one or two loca-
tions. In all, the 422 pedestrians and drivers provided 1835
locations (data points) on campus that were perceived to
have a high-risk of pedestrian crashes (compared to only 57
police-reported crash locations). Twenty-seven off-campus
locations were also marked, but these were not used in fur-
ther analyses. Because there were only minor differences
between locations identified during daylight and darkness,
the 1835 locations identified in the surveys were combined
to create a composite map representing the perception of
pedestrian crash-risk on campus (Fig. 4).

4. Reported crashes and risk perception: comparing
point distributions

If no difference is found between the spatial distribu-
tion of perceived pedestrian risk and the police-reported
crash-risk, the survey data would add little value in iden-
tifying future crash locations. However, even a visual com-
parison ofFigs. 3 and 4shows that there are differences
between the locations of police-reported crashes and the lo-
cations where pedestrians and drivers perceived pedestrian
crash problems on the UNC Campus. This visual assessment
must be supported by statistical methods to reveal whether
the differences between the two point distributions are sig-
nificant. We use two quantitative techniques (Chi-squared
and nearest neighbor cluster analyses) to test the null hy-
pothesis thatthe spatial distribution of risk perceptions is

not significantly different from the spatial distribution of
police-reported pedestrian crash locations.

4.1. A note about estimating surfaces

We use kernel density estimation to create a probabil-
ity surface of crashes. Both the kernel density and nearest
neighbor cluster analyses assume complete spatial random-
ness, which implies that there is the potential for reported
and perceived pedestrian crash-risk across the entire map
surface, i.e. in buildings and in other open spaces away
from the roadway network. Though this assumption cannot
realistically be made, the purpose of the spatial testing is
to show the differences in the actual and perceived-risk
distributions. Since the point distributions are naturally
constrained to the same roadway network (crashes occurred
on roadways, at intersections, and in parking lots, and peo-
ple marked risky locations on roadways, at intersections,
and in parking lots), the crash-risk that is estimated is also
constrained along the roadways and, therefore the spatial
comparisons presented here are appropriate.

4.2. Chi-squared analysis

The first statistical test used is a Chi-squared test,
which examines the relationshipbetweenpoints in each
distribution (Taylor, 1977; Getis and Boots, 1978). This
inter-distributional test shows whether the total counts of
police-reported crashes and the points perceived as danger-
ous on each of the 94 campus roadway network segments
or intersections can be classified into similar ranges, and
therefore, are distributed similarly. Note that the test does
not account for the location of each segment/intersection,
but it is an appropriate test to make an initial comparison be-
tween both point distributions along the network segments.
Each of the 94 campus roadway segments/intersections are
classified as having 0, 1, 2, or at least 3 reported crashes.
This classification is then compared to the expected num-
ber of crashes on each segment/intersection if the crashes
were distributed in the same spatial pattern as the perceived
dangerous locations.

This parallel classification scheme allows a Chi-squared
statistic to be calculated:

χ2 =
n∑

i=1

(Oir − Oie)
2

Oie

(1)

where i represents each of the four categories (0, 1, 2,
or at least 3 or more police-reported crashes),Oir is the
number of segments/intersections falling into categoryi
according to the number of police-reported crashes on the
segment/intersection, andOie is the expected number of
segments/intersections that would fall into categoryi if the
police-reported crashes were spatially distributed on the
roadway segments/intersections in the same manner as the
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perception survey responses. The test is also performed
using the perception data as a base:

χ2 =
n∑

i=1

(Oip − Oie)
2

Oie

(2)

wherei represents each of the five categories (0–29, 30–59,
60–89, 90–119, or 120 or more perception points) andOip

is the number of segments/intersections falling into cate-
gory i according to the number of perception points on the
segment/intersection.

4.3. Chi-squared results

Both Chi-squared tests showed that the counts of crashes
and risk-perception locations on each segment/intersection
were distributed into different categories. When the expected
number of police-reported crashes on each roadway seg-
ment/intersection was based on the distribution of locations
perceived to be dangerous, the Chi-squared value was 46.4
with three degrees of freedom (Table 2). Therefore, we are
99.9% confident that there are differences in the manner in
which reported and perceived dangerous locations are dis-
tributed on the campus roadway intersections and segments.
Similarly, a Chi-squared value of 14.5 with four degrees of
freedom was generated when the expected number of loca-
tions perceived to be dangerous on each segment/intersection
was based on the number of police-reported crashes, mean-
ing that the two distributions were significantly different at
the 99.0% level.

Table 2
Chi-squared test (N = 94 segments/intersections)

i, class (number of reported crashes on
segment/intersection)

Oir , number of
segments in classi

Oie, expected number of segments in classi if reported crashes were
distributed in same spatial pattern as perception locations

Reported crash data
(
χ2 = ∑n

i=1(Oir − Oie)
2/Oie

)
0 ≤ x < 1 59 80
1 ≤ x < 2 22 10
2 ≤ x < 3 9 2
x ≥ 3 4 2

Total 94 94

χ2 46.4
d.f. 3
α(0.001) 16.3

i, class (number of perception locations on
segment/intersection)

Oip, number of
segments in classi

Oie, expected number of segments in classi if perception locations
were distributed in same spatial pattern as reported crashes

Perception data
(
χ2 = ∑n

i=1(Oip − Oie)
2/Oie

)
0 ≤ x < 30 76 59
30 ≤ x < 60 13 22
60 ≤ x < 90 2 9
90 ≤ x < 120 1 2
x ≥ 120 2 2

Total 94 94

χ2 14.5
d.f. 4
α(0.01) 13.3

Though these differences did not account for the spatial ar-
rangement of the segments/intersections, this result showed
that some parts of the campus roadway network with larger
proportions of police-reported crashes were not matched
with a large proportion of perception survey responses (such
as the intersection of Franklin Street and Columbia Street)
and that specific areas with large proportions of survey re-
sponses had few crashes reported in the last 5 years (such as
the segment of Manning Drive to the east of its intersection
with Columbia Street).

4.4. Nearest neighbor cluster analysis

The second type of spatial comparison, nearest neighbor
analysis, is used to identify clusters of points within each
spatial distribution. After they are identified, the clusters of
one distribution are compared with clusters of the other dis-
tribution. This intra-distributional technique uses Euclidean
distance to identify sets of points that are clustered more
closely than would be expected by random chance. Points
are considered clustered when the mean random distance
between them is less than a minimum distance based on the
standard error of a random distribution:

minimum distance= 0.5

√
A

N
− t

[
0.26136√

N2/A

]
(3)

whereA is the area of the study region,N is the number of
crash locations (N = 57) or locations perceived to be dan-
gerous (N = 1835),t is a probability level in the Student’s
t-distribution, and [0.26136/(

√
N2/A)] is the standard error
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distance of a random distribution (Levine, 1999). In other
words, for a one-tailed probability,P, fewer thanP percent
of the points would have nearest neighbor distances less than
this lower limit if the point distribution was completely ran-
dom. For this analysis we use aP-value of 0.01 so that we
can be 99% confident that the police-reported and percep-
tion location clusters did not occur by random chance. The
minimum number of points required to make a cluster is set
at three reported crashes and 40 locations perceived to be
dangerous.

The standard deviational ellipse of each nearest neigh-
bor cluster and the number of points they contain are also
reported. The standard deviational ellipse measures the dis-
persion and orientation of the points around the mean cen-
ter (mean latitude, mean longitude) of the cluster. Equa-
tions for drawing standard deviational ellipses are presented
by Levine (1999). Similarity between the two distributions
is demonstrated when the standard deviational ellipses of
the police-reported crash clusters overlap corresponding per-
ceived location cluster ellipses. Yet, if the standard devia-
tional ellipse of a reported crash cluster does not contain the
mean center of the closest cluster of perceived locations, we
can be 99% confident that the two types of data are identi-
fying different locations with pedestrian problems.

4.5. Nearest neighbor cluster results

Cluster analysis revealed notable differences between
concentrations of reported crashes and locations perceived
to be dangerous (Fig. 5). Only three police-reported crash
clusters were identified at the 99% significance level us-
ing the nearest neighbor cluster method. In contrast, there
were six clusters of perception locations. The relationship
between location and size of the clusters of police-reported
crashes and clusters of locations perceived to be dangerous
is important to note. At the intersection of Franklin Street
and Columbia Street, the center of the cluster of nine re-
ported crashes and center of the perceived location cluster
were within 12 m (40 ft) of each other and their standard
deviational ellipses overlapped. This means that the percep-
tions of pedestrians and drivers verified reported pedestrian
problems at that intersection. Yet, neither of the other two
clusters of reported crashes corresponded closely to a cluster
of locations perceived to be dangerous. Though the cluster
of five reported crashes on South Road was only 100 m
(320 ft) from a cluster of locations perceived to be danger-
ous on South Road, their standard deviational ellipses did
not overlap (Fig. 5). Therefore, we are 99% confident that
they refer to different locations of pedestrian problems. The
perception cluster is centered on the crosswalk between the
Student Union and Student Recreation Center, while the
police-reported crash cluster may represent general prob-
lems in the vicinity of South Road. The final cluster of four
reported crashes was located off Manning Drive near the
hospital complex, but its standard deviational ellipse did
not overlap with either cluster of locations perceived to be

dangerous on Manning Drive. We conclude that the clusters
generated by the police-reported crash locations and loca-
tions perceived to be dangerous provide further evidence
that the two data sets have different spatial characteristics.

4.6. Spatial testing summary

Several other spatial statistics were used to test for sig-
nificant differences between reported and perceived-risk
point patterns. Though they are not reported here, Ripley’s
K-function (Bailey and Gatrell, 1995; Levine, 1999) and
a G-function (Bailey and Gatrell, 1995) also revealed
significant differences between the locations of the two
distributions.

Overall, the spatial analyses show that some locations of
reported pedestrian crashes are identified accurately by per-
ception survey participants, while there is also evidence of a
“perception mismatch” between clusters of reported crashes
and perceived pedestrian crash-risk. Based on the results of
this spatial analysis, there are statistically significant dif-
ferences between the distribution of police-reported crashes
and the distribution of locations perceived to be dangerous,
implying that risk-perception data can be valuable in proac-
tive pedestrian planning.

4.7. Applying perception mismatch to crash prevention

The “perception mismatch” between police-reported
crash and survey locations has implications for crash pre-
vention. Recommendations can be made for four different
types of locations:

(1) High reported and high perceived-risk: Top-priority ar-
eas for engineering, education, and enforcement treat-
ments.

(2) High reported and low perceived-risk: Both engineer-
ing and education improvements should be explored.
These are locations where there is a physical problem
yet people are not aware of the danger. The physical
aspect of the problem can be treated with engineering
changes, and the awareness aspect can be treated by ed-
ucating drivers and pedestrians. Note that education may
be implemented much more quickly than an engineer-
ing treatment, which may have to go through a Capital
Improvement Program before being made.

(3) Low reported and high perceived-risk: Evaluate these
areas to see if pedestrian and driver experience has
accurately identified existing and potential problems. If
problems are found, it may be possible to treat the sites
proactively with appropriate engineering, education, and
enforcement measures to prevent future pedestrian
crashes.

(4) Low reported and low perceived-risk: No countermea-
sures necessary, but continue normal monitoring.

Note that it is possible that people simply do not use
or they walk with extreme caution in areas where there is
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extreme danger (i.e. high-speed arterials, multi-lane road-
ways, streets with high traffic and no sidewalks, etc.).
We emphasize that our methodology is most useful for
situations and areas where there is a moderate perceived
crash-risk (common on campuses, in neighborhoods, and in
commercial areas). Depending on their ability to confront
danger (which may be affected by age, weather, drugs, etc.),
pedestrians may walk in these moderate-risk locations. Even
pedestrians who perceive danger, but may not take unwar-
ranted risks, can suggest where crashes may occur to others.
Further, speeding or reckless drivers who are unaware of
pedestrians may cause pedestrian crashes, no matter how
careful the pedestrians are when they are in the roadway.
Therefore, it is useful to know about the locations where
pedestrians perceive danger—it is locations like these where
pedestrian crashes could occur in the future if engineering,
education, and enforcement treatments are not made.

It is especially important to identify risky locations proac-
tively for pedestrians because pedestrian injuries are often
much more severe when accidents occur. In locations that
have experienced no pedestrian crashes, the very first crash
can be fatal, as we saw on the UNC Campus. In addition,
perceived-risk can be used for more than a superficial ex-
amination of personal ability to “read” the safety of the en-
vironment. The perception survey and resulting maps can
be shared with the public to point out specific locations as
being dangerous and in need of attention.

5. Modeling reported and perceived crash-risk

On the UNC Campus, reported crash locations do not
correspond closely to perception survey locations near the
UNC Hospital and south of Manning Drive; perception sur-
vey locations do not correspond closely to police-reported
crash locations along parts of Cameron Street and on
Columbia Street between South Road and Manning Drive
(compareFigs. 3 and 4). The spatial pattern of “perception
mismatch” requires further investigation. A richer under-
standing of this spatial pattern can be obtained by exam-
ining the combinations of pedestrian and vehicle volumes,
roadway features, and nearby land uses that may be under-
lying physical/environmental causes of pedestrian crashes
and risk perception.

We use Poisson and negative binomial crash models to
show the exposure, roadway, and land use factors that are
related significantly (at least at the 90% confidence level) to
the police-reported and perceived-risk of pedestrian crashes.
Incorporating these geographic/land use factors in the re-
gression modeling process demonstrates the connectivity
between spatial and multivariate crash analysis.

5.1. Regression model data

The campus roadway network is divided into 38 inter-
sections (nodes, defined as the area within 15 m (50 ft) of

the intersection of two or more roadway center lines) and
56 segments (links, defined as lengths of roadway between
intersections), each of which are assigned specific pedes-
trian crash-risk, exposure, roadway, and land use charac-
teristics. These 94 units of analysis will be referred to as
segments/intersections in the following sections. By con-
sidering the geographic context of the UNC Campus, this
study shows that exposure, physical roadway, andspatial
characteristicsare related to pedestrian safety problems.

Three exposure, five roadway, and seven land use char-
acteristics were collected for each segment/intersection
from traffic and pedestrian volume maps, field observation,
and GIS measurement. Descriptions of these variables and
their hypothesized relationships to pedestrian crash-risk
(represented by the number of reported crashes or number
of perceived locations on each segment/intersection) are
presented inTable 3.

5.2. Regression models

The Poisson statistical distribution represents the occur-
rence of “infrequent events.” Therefore, Poisson modeling is
appropriate for modeling the number, or count, of actual or
perceived crash locations on each campus roadway intersec-
tion/segment. However, the Poisson model requires that the
mean equal the variance of the count data. The negative bi-
nomial regression model can relax the mean–variance equal-
ity assumption (Greene, 1997; Cameron and Trivedi, 1998).
The difference between the means and variances of reported
crashes (mean= 0.606, variance= 1.44) and locations per-
ceived as dangerous (mean= 19.5, variance= 946) is rela-
tively large, favoring the negative binomial model. However,
for comparison, both Poisson and negative binomial models
are presented.

5.3. Poisson model

The Poisson model usesYi to denote the number of crash
occurrences or locations perceived to be dangerous for the
ith of N = 94 campus roadway segments/intersections.
This number of crash occurrences on each element can be
Poisson distributed with probability density:

P [Yi = yi] = eλiλ
yi

i

yi!
(4)

where λi is the segment/intersectioni’s expected crash
frequency;yi = 0, 1, 2,. . . (realized value of the crash fre-
quency); andi = 1, 2, . . . , N andyi! denotes the factorial
of yi. Note that the mean and variance ofYi equalsλi.

To incorporate explanatory variablesxi the parameterλi

is specified to be

λi = exp(β′xi) (5)

whereβ′ is the vector of estimated parameters; andxi is the
roadway elementi’s explanatory variables (e.g. pedestrian
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Table 3
Campus roadway intersection/segment variables and hypothesized relationships to pedestrian risk

Variable Description Hypothesized relationship (assumes “all else being equal,. . . ”)

Dependent variables
NOBSERV The number of pedestrian crashes reported on each

segment/intersection between 10/1/1994 and 9/30/1999
N/A

NPERCEP The number of locations marked on each
segment/intersection by perception survey respondents

N/A

Exposure variables
LNLENGTH Natural logarithm of segment/intersection length in feet Greater segment/intersection length, higher pedestrian

exposure, and higher automobile exposure increases risk of
pedestrian crashes

LNPED Natural logarithm of estimated daily pedestrian volume
LNAUTO Natural logarithm of estimated daily vehicle volume

Roadway variables
INTERSEC 0= segment; 1= intersection (within 50 ft of the center of

an intersection)
Higher risk on segments than intersections because of
mid-block crossings and dangerous crossing behaviors; yet
intersection risks might be higher due to more
pedestrian-vehicle conflicts

LANES Number of lanes; intersection= average of all approaches Higher risk with more lanes because of difficulty judging
gaps and longer crossing distance

SIDEWALK 0 = no sidewalk; 1= sidewalk on one side or incomplete
sidewalk; 2= complete sidewalks on both sides

Lower risk with sidewalks because pedestrians are physically
separated from traffic

BUS1000 Number of bus stops per 1000 linear feet Higher risk with bus stops because pedestrians hurry to and
from buses

XWAL1000 Number of marked crosswalks per 1000 linear feet Lower risk with crosswalks because pedestrians will converge
to them and drivers will yield to pedestrians using them

Spatial/land use variables
DORM Distance (in feet) from the center of the segment/intersection

to nearest of over 20 dorms
Proximity to dorms may increase risk because dorm residents
may be younger and use less care when walking

LIBRARY Distance to nearest major campus library (Wilson, House, or
Davis)

Proximity to libraries may decrease risk because library users
may be less likely to have been drinking alcohol and may be
more cautious as pedestrians

STADIUM Distance to nearest sports stadium (Carmichael, Boshamer,
Kenan, or Smith Center)

Proximity to stadiums may increase risk because people are
less familiar with the environment, are often in a hurry, often
drink alcohol, and often leave stadium events en masse

HOSPITAL Distance to UNC Hospital complex Proximity to hospital may increase risk because many
pedestrians are from outside Chapel Hill and unfamiliar with
environment

PARKDECK Distance to nearest campus parking deck (Craige or hospital) Proximity to parking deck may increase risk because drivers’
attention is focused on searching for parking and not on
pedestrians

ACADEMIC Distance to nearest of over 30 academic buildings Proximity to academic buildings may increase risk because
student pedestrians may hurry to class

DINING Distance to nearest campus cafeteria (Lenoir Hall or Chase
Hall)

Proximity to dining halls may increase risk because students’
attention may be focused on eating-related activities

exposure and crosswalk presence). Goodness of fit statistics
for this model are discussed inGreene (1997).

5.4. Negative binomial model

The negative binomial model relaxes the mean–variance
equality assumption of the Poisson model to allow for un-
explained randomness inλi. This is done by specifying:

ln λi = β′xi + εi (6)

whereεi is the error term, which can reflect a specification
error such as omitted explanatory variables and/or intrinsic
randomness. In addition, the negative binomial model as-
sumes that exp(εi) has a gamma distribution with mean 1

and varianceα2. The derivation of the probability distribu-
tion for this model is given inGreene (1997)andCameron
and Trivedi (1998).

Compared with the Poisson model, this model has an
additional estimable parameterα, such that

Var[yi] = E[yi]{1 + αE[yi]} (7)

This is a natural form of overdispersion and the overdisper-
sion rate:
Var[yi]

E[yi]
= 1 + αE[yi] (8)

The model can be estimated by the standard maximum like-
lihood method. Ifα is not statistically different from zero,
then the simple Poisson model is more appropriate.
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5.5. Regression modeling process

With 57 crashes reported on 94 segments/intersections
in 5 years, a single pedestrian crash on one of the seg-
ments/intersections has a large influence on the statis-
tical significance of its exposure, roadway, and spatial
attributes (there are an average of 0.606 police-reported
crashes on each segment/intersection, and 63% of the seg-
ments/intersections have no crashes). When using percep-
tion data, the average segment/intersection has 19.5 marked
survey locations. Therefore, even if a few respondents over-
estimate the risk of future pedestrian crashes at a location,
their individual response will not have a large effect on the
accuracy of the perception model. Comparing the factors
from these two types of models provides a deeper under-
standing of the factors that influence pedestrian crash-risk.

The effects of exposure, roadway, and land use (spa-
tial/environmental) factors on reported pedestrian crash
locations and perception of crash-risk were hypothesized
in Table 3. First, separate exposure, roadway, and spatial
models were estimated. Interaction terms were tested in
these models, but they did not improve their fit. Then, the
variables from the exposure, roadway, and spatial mod-
els were used to estimate Poisson and negative binomial
combined models. Finally, the most statistically significant
variables from the combined models were kept and used to
estimate refined models. Results from the refined models
are presented below.

Table 4
Poisson and negative binomial models (N = 94)

Independent variable Observed-risk: coefficient, significance level (P) Perceived-risk: coefficient, significance level (P) Mean

Poisson Model 1: Negbin Model 2: Poisson Model 3: Negbin Model 4:

Constant −13.5, (0.0000) −13.5, (0.0033) −19.9, (0.0000) −14.4, (0.0000)
Exposure factors

LNLENGTH 0.625, (0.0165) 0.625, (0.0870) 1.05, (0.0000) 0.867, (0.0000) 5.87
LNPED 0.672, (0.0091) 0.667, (0.0771) 1.25, (0.0000) 0.871, (0.0000) 7.09
LNAUTO 0.381, (0.154) 0.383, (0.262) 1.05, (0.0000) 0.796, (0.0000) 8.85

Roadway factors
INTERSEC −0.935, (0.129) −0.932, (0.276) −0.797, (0.0000) −0.246, (0.451) 0.404
SIDEWALK 0.0940, (0.851) 0.101, (0.851) −1.01, (0.0000) −0.697, (0.0029) 1.61
BUS1000 −0.159, (0.0958) −0.158, (0.0281) 0.00750, (0.619) 0.0159, (0.774) 1.09
XWAL1000 0.0810, (0.0089) 0.0806, (0.0665) 0.090, (0.0000) 0.0643, (0.0002) 5.29

Spatial factors
LIBRARY −0.000841, (0.0685) −0.000822, (0.103) 0.000218, (0.0063) 0.000316, (0.0884) 1910
ACADEMIC 0.000996, (0.0599) 0.000973, (0.120) −0.000225, (0.0137) −0.000348, (0.107) 983
STADIUM 0.000783, (0.0300) 0.000764, (0.0379) −0.000636, (0.0000) −0.000644, (0.0001) 1690

α 0.0215, (0.944) 0.332, (0.0000)

Summary statistics
log likelihood −83.0 −83.0 −500 −307
Restrictive log likelihood −107 −82.978 −1510 −500
Goodness of fitR2

p 0.300 0.799
Goodness of fitR2

d 0.361 0.763
χ2 48.1, (0.0000) 0.0114, (0.915) 2030, (0.0000) 386, (0.0000)

Dependent variable= NOBSERV (µ = 0.606) Dependent variable= NPERCEP (µ = 19.5)

5.6. Regression modeling results

Independent variable coefficients, standard errors, signif-
icance levels and overall model summary statistics are pre-
sented for the four refined models inTable 4. These four
refined models include two Poisson (Models 1 and 3) and
two negative binomial models (Models 2 and 4) estimating
police-reported and perceived-risk frequencies.

The Poisson Model 1 is preferred to Model 2 because it
has more significant parameter estimates andα is not sta-
tistically significant. However, the negative binomial Model
4 is preferred to Model 3 based on goodness-of-fit and the
significance ofα. Therefore, Models 1 and 4 are discussed,
in this order.

As expected, longer segments/intersections and higher
pedestrian volumes are significantly related to higher lev-
els of police-reported crashes, though higher automobile
volumes are not statistically significant. In addition, the
elasticity of the exposure factors is less than one, indicating
that as length or pedestrian volume increase, the number of
police-reported crashes on road segments or intersections
increase at a decreasing rate. For example, a one percent
increase in pedestrian volume increases the number of
police-reported crashes by 0.672%.

After accounting for exposure, the results show that when
segments/intersections had more marked crosswalks per
linear foot, they had a greater number of police-reported
pedestrian crashes. Though this result is counter to our
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expectations, it is consistent with studies byHerms (1972)
and Zegeer et al. (2001)who find some locations with
marked crosswalks have more pedestrian crashes than con-
trol locations without marked crosswalks. However, this
result does not necessarily suggest that providing marked
crosswalks “causes” pedestrian crashes. Our data does not
indicate where the crashes occurred relative to crosswalks.
The relation of higher crosswalk density to a higher inci-
dence of pedestrian crashes may result from more danger-
ous pedestrian or driver behavior in the vicinity of marked
crosswalks, weak crosswalk design, or other factors. Fur-
ther study of crosswalks and related behavior is needed to
assess the effectiveness of this treatment.

The number of bus stops was statistically significant in the
crash model (90% level), indicating that more bus stops do
not create a greater pedestrian crash-risk. The intersection
variable was not statistically significant in the model. Finally,
the number of lanes was statistically non-significant and
dropped from the final model specification.

Among spatial factors, proximity to academic buildings
and stadiums is associated with higher crash-risk, whereas
proximity to libraries with lower crash-risk. At this point,
it is interesting to compare the results of Models 1 and 4.
The coefficients for the significant spatial variables in the
reported crash model and the perceived-risk model have op-
posite signs. Therefore, people perceive less risk near some
types of land uses where crashes have occurred and per-
ceive more risk near other land-uses where no crashes have
occurred. Locations near the main campus libraries have
experienced fewer crashes, but they are perceived to have
more danger. In contrast, proximity to academic buildings
increases police-reported crash-risk but is not perceived to
do so. Finally, locations near stadiums are more dangerous
according to police-reported crash data than people think.
The distance from the segments/intersections to the closest
dorm, hospital, parking deck, and dining hall were not in-
cluded in the refined models because they lacked statistical
significance.

The relationship between proximity to certain land uses
and crash-risk clearly needs further investigation. Spa-
tial/land use factor results may have implications for the
design of college campuses and neighborhoods. Further re-
search could also examine whether a dense traffic network
with short blocks and many intersections or dense residential
neighborhoods are related to greater actual and perceived
pedestrian risk. Our study used segments and intersections
as the unit of analysis, so we did not test these relationships.

The results of exposure and roadway factors are quite
consistent across Models 1 and 4, increasing our confidence
in the appropriateness of behavioral data. Though sidewalk
presence was not statistically significant in Model 1, it is
significant in Model 4. The negative coefficient indicates
that pedestrians and drivers perceived a lower pedestrian
crash-risk when more complete sidewalks were provided and
more danger when segments/intersections had incomplete
sidewalks.

6. Potential biases and other considerations

(1) Police-reported crashes may have occurred in a differ-
ent context than is currently perceived by survey par-
ticipants: Perceptions of locations with a high-risk of
crashes are influenced by a context of exposure, road-
way, and spatial factors. Crashes that occurred in 1995
may have occurred when automobile and pedestrian
volumes were different, before traffic signal timing was
adjusted, or before sidewalks and new buildings were
constructed. Unreported pedestrian crashes may also
contribute to the spatial mismatch between reported
and perceived-risk locations.

(2) Oversampling at certain locations may create a recency
of experience bias: Distributing surveys at five locations
with high pedestrian exposure on campus ensured that
input was gathered from a large number of pedestrians
in a short amount of time and that people who walk
in all areas of campus were represented in the sample.
Yet, the 215 pedestrians who took the survey on cam-
pus may have remembered areas that they had walked
through recently and, therefore, may have been more
likely to mark them as dangerous. If the goal of the
survey is to gather input from a large number of pedes-
trians in a short amount of time, then surveys should
be given at locations with high pedestrian activity. Yet,
if the goal is to obtain a more spatially-representative
sample, techniques such as regular, cluster, random,
and stratified random sampling should be used.

(3) The perception survey may have a non-response bias:
About 21% of mail surveys were returned. Though
more than 25% of pedestrians agreed to take the survey
in-person, the overall survey response rate remained
relatively low. Therefore, the survey results may be
more likely to reflect the views of people who may be
more risk-averse or who care more about the issue of
pedestrian safety on campus. These people may be more
aware of the exceptional pedestrian problems than peo-
ple who did not participate, resulting in locations that
are commonly viewed as dangerous to be overlooked.
Or, their awareness may cause perceived problems to
be overstated. Non-response bias could be mitigated
by re-mailing the survey or being more assertive when
offering the survey in person, though we did not pursue
these options in this study.

(4) The survey results may be influenced by the driver-
pedestrian mix, especially if they perceived-risks differ-
ently: Visual inspection of disaggregate perceived-risk
maps showed that drivers and pedestrians perceived
pedestrian problems at similar locations on the UNC
Campus, which allowed the spatial data from both sur-
veys to be combined. Yet, if drivers and pedestrians
had not agreed, then this survey would have been bi-
ased toward locations with higher pedestrian exposure
and locations that pedestrians believed had the greatest
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danger (almost three times as many pedestrian surveys
were analyzed). In such a case, it would be necessary
to generate separate maps and models of pedestrian and
driver perception. The perception mismatch between
pedestrians and drivers is also important to note be-
cause the most dangerous locations may be where one
of these two groups do not perceive a high-risk.

(5) Increasing perception survey sample size may improve
perception maps and models: Increasing sample size
can increase the number of perception data points. This
can increase the significance of spatial clustering of
survey locations, significance of the difference between
police-reported and perceived-risk spatial distributions,
and significance of the perceived-risk model parame-
ters. However, the sample size could not be increased
in this study due to budget constraints.

(6) The richness of the perception data may depend on the
number of locations survey participants are required to
identify: The surveys can be designed to ask respondents
to identify any number of dangerous locations, asking
participants to mark only one site may result in the selec-
tion of a single common location that has received pub-
lic attention for safety problems. Asking pedestrians and
drivers to mark more than one site increases the number
of data points that can be used to create risk-perception
maps and used to estimate regression models. How-
ever, responses by the same person may be correlated.
In addition, asking respondents to identify too many
dangerous sites lengthens the survey and increases the
possibility of identifying low-risk sites as dangerous.
Our compromise was to ask for three most dangerous
sites.

(7) The results will depend on the accuracy inherent in the
data: Automobile volumes were estimated to the near-
est 1000 vehicles per day from 1997 Chapel Hill traffic
data (Town of Chapel Hill, 1999). Pedestrian volumes
were estimated to the nearest 50 persons per day based
on a campus map of pedestrian flows (Rice, 1998).
Known pedestrian volumes at several locations helped
guide estimates at other locations. Finally, the GIS
distance measurements were made to the nearest 30
meters (100 ft). While the imprecision of each of these
measurements may be a problem, the data are reason-
ably accurate for the purposes of identifying pedestrian
risks.

(8) Maps may be difficult for participants to interpret: Not
all pedestrians and drivers are likely to be familiar with
maps of a local area and some groups, such as the
elderly, may have a difficult time reading small print.
The maps used for this survey were intended to be un-
cluttered, have several recognizable landmarks, and be
easy to read. Yet, printing and mailing costs required
the campus map to fit on one page, making building and
road labels very small. In addition, study area borders
may not have been be clear to participants, resulting in
fewer locations marked on the edges of campus.

(9) Density maps may not reflect the probability of future
crashes: While the kernel density maps presented in
Figs. 3 and 4are visual tools for highlighting concen-
trations of crashes, they do not show the probability
of future crashes or display crash-risk (normalized by
pedestrian and vehicle exposure) over a surface. Fur-
thermore, the phenomena of regression-to-the-mean
must be recognized. That is, locations where many
crashes have occurred recently may regress to the over-
all mean, which is presumably lower. Furthermore,
automobile-pedestrian collisions cannot occur in build-
ings, parks, or open fields, though density maps may
seem to imply this. Possible misinterpretation of density
maps is one reason why quantitative spatial tests are
needed to identify high-risk locations for appropriate
safety countermeasures. However, density maps are still
useful for practitioners because it is important to focus
on areas where the highest actual and perceived-risk
exists, which is often in locations with high pedestrian
and vehicle volumes.

(10) Modifications may be required to apply this method
to neighborhoods and commercial zones: When us-
ing these techniques in non-campus environments,
police-reported crash data can be collected and ana-
lyzed in a similar manner as presented in this paper,
but the perception survey technique should account for
the fact that, unlike a “self-contained” college cam-
pus, pedestrians and drivers who use neighborhoods
and commercial areas may reside far from the study
area. By mailing driver surveys to a random sample of
people with parking permits on campus, and adminis-
tering pedestrian surveys to a random sample of faculty,
employees, and students living on and off-campus, a
sample was generated for the UNC Campus study. This
sample was supplemented with hand-out-hand-back
pedestrian surveys given at different locations on cam-
pus. A more appropriate technique for a neighborhood
or commercial area may be to distribute all surveys
in-person at a number of randomly-chosen locations,
increasing the likelihood that survey respondents are
familiar with the local pedestrian environment.

7. Conclusions

Spatial tests have shown that the distribution of crash-risk
perception is different than reported crash-risk. Perception
information can help identify locations where an accident
is waiting to happen. Therefore, while funds should con-
tinue to be allocated to treat locations with reported crash
concentrations, this method can be used to justify proactive
spending to educate pedestrians and drivers about areas with
reported and perceived danger, evaluate risky behaviors and
roadway deficiencies at locations with perceived problems,
and to make treatments to prevent injuries and fatalities at
locations that are overlooked by police reports. Collecting
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perception data also encourages public participation in the
safety analysis process.

The perception survey also increased the amount of data
for regression modeling and provided insight into the fac-
tors related to pedestrian risk. Models showed that higher
pedestrian volume, higher automobile volume, incomplete
sidewalks, and fewer bus stops and more marked cross-
walks per foot of segment/intersection were correlated with
higher risk. Furthermore, perceived-risk was different than
police-reported crash-risk in locations that were proximate
to campus libraries, academic buildings, and stadiums.

We have developed a prototype tool that can be used to
recommend measures for improving pedestrian safety. Due
to resource limitations, we did not conduct a before-and-after
study, so future researchers should collect crash and in-
jury data over time to document the effectiveness of this
method. Mismatched locations that are identified should be
studied further to identify dangerous roadway conditions
and pedestrian and motorist behavior. If this physical and
behavioral site analysis reveals that the pedestrian environ-
ment is abnormally dangerous at locations identified from
the perception survey but missed by police reports, this
prototype tool can be valuable for preventing pedestrian
crashes at individual sites.

Future studies can use techniques such as spatial and ordi-
nal regression analysis to examine how perception is related
to injury severity. It would be interesting to see if policies
aimed at making the pedestrian environment feel safer actu-
ally result in fewer, but more severe crashes because pedes-
trians and drivers have a “false sense of security” and use
less caution.

One interesting result of the survey was that while only
28% of drivers felt that they had experienced a “near miss”,
over 40% of pedestrians felt that they had nearly been struck
by a vehicle within the past month. A more in-depth analysis
of near miss locations may be incorporated to further explore
the differences between how pedestrians and drivers view
pedestrian risk.
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