Bicycle Signals

Presented by

Peter Koonce Rock Miller Dave Kirschner

Wednesday, April 25, 2018

Housekeeping

⇒ Problems with audio?

Dial into the phone line instead of using "mic & speakers"

⇒ Webinar issues?

Re-Load the webpage and log back into the webinar. Or send note of an issue through the Question box.

⇒ Questions?

Submit your questions at any time in the Questions box.

Archive and Certificates

Archive posted at www.pedbikeinfo.org/webinars

- **Copy of presentations**
- ⇒ Recording (within 1-2 days)
- ⇒ Links to resources

Follow-up email will include...

- ⇒ Link to certificate of attendance
- ⇒ Information about webinar archive

PBIC Webinars and News

- ⇒ Find PBIC webinars and webinar archives pedbikeinfo.org/webinars
- ⇒ Follow us for the latest PBIC News facebook.com/pedbikeinfo twitter.com/pedbikeinfo
 - ⇒ Join us on Twitter using #PBICWebinar
- ⇒ Sign up for our mailing list pedbikeinfo.org/signup

Upcoming Webinar

Visit www.pedbikeinfo.org to learn more and register

Using Crash Types to Understand Pedestrian and Bicyclist Safety


April 30, 1:00 – 2:30 PM Eastern Time

Ilir Beijleri Univ of Florida

Michael Sanders Arizona DOT

Brent Crowther Kimley-Horn

Michelle Beckley Lee Engineering

Bicycle Signals

April 25, 2018

Presented by:

Peter Koonce, PE

Webinar Outcomes

- Identify uses of bicycle signals for making intersections safer for people.
- Understand elements of a bicycle signal.
- Explore issues and restrictions included in FHWA Interim Approval.
- Identify steps to implementation

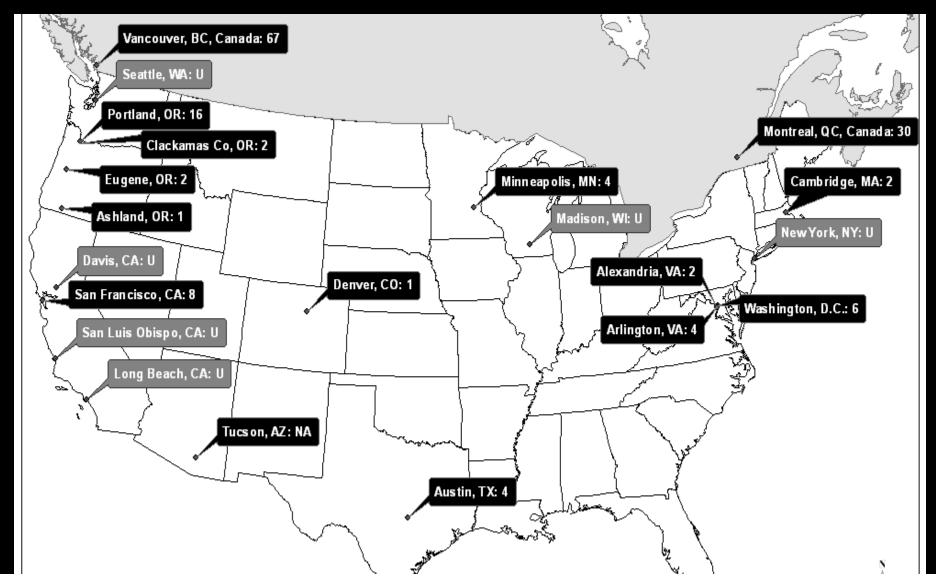
Outline

Background on Bicycle Signals

Recent Research

FHWA Interim Approval

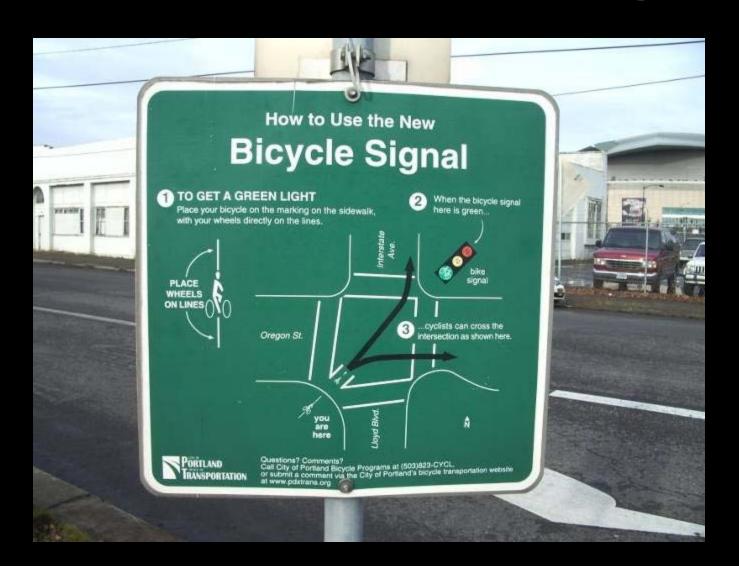
Bicycle Signals


- Common applications in Europe
- U.S. first bicycle signal in 2004
- FHWA Interim Approval December 2013

Bicycle-Specific Traffic Signals: State-of-the-Practice

- review of relevant guidance documents
- survey of jurisdictions with known installations of bicycle-specific signals

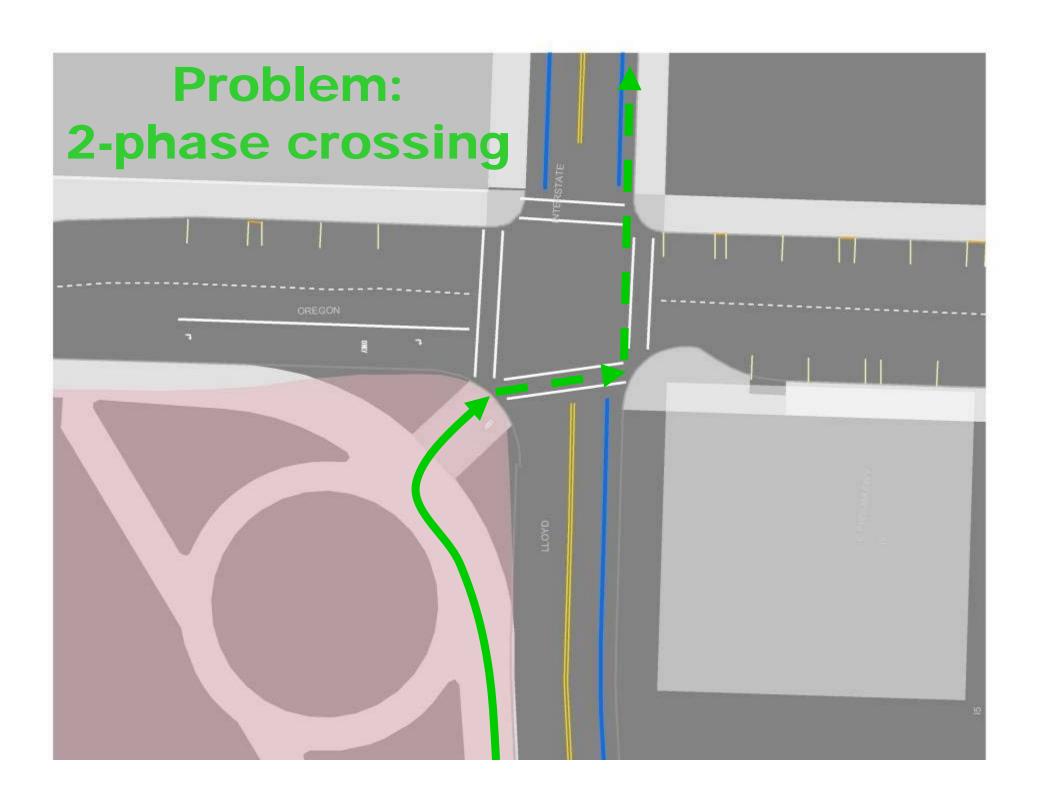
Survey Distribution and Response

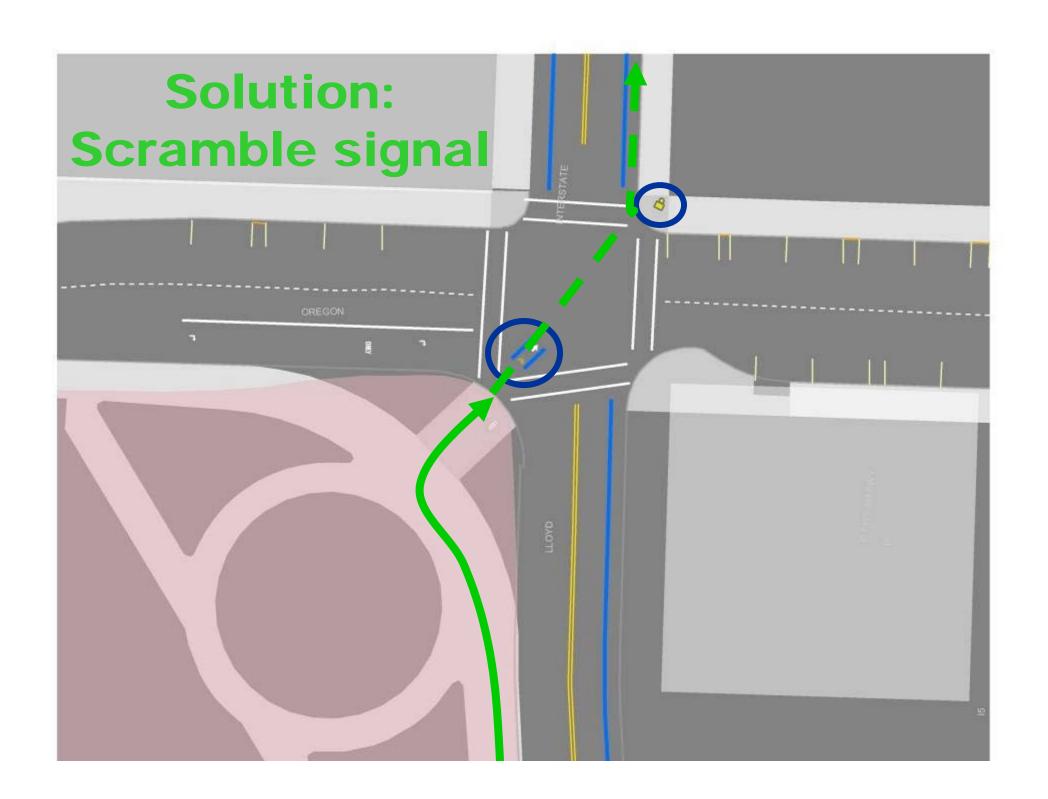

Summary of Bicycle Signal PSU Survey (2013)

- Total # of Municipalities: 21
- Total Intersections: 63
- Total Signal Heads: 149

Motivations for Use

	Numb	er of Interse	ctions	Percent of Sample			
Motivations	US	CN	Total	US	CN	Total	
Non-compliance	3	0	3	8%	-	3%	
Contra-flow	6	36	42	17%	69%	48%	
Unique path	13	3	16	36%	6%	18%	
Safety	9	12	21	25%	23%	24%	
Other	4	1	5	11%	2%	6%	

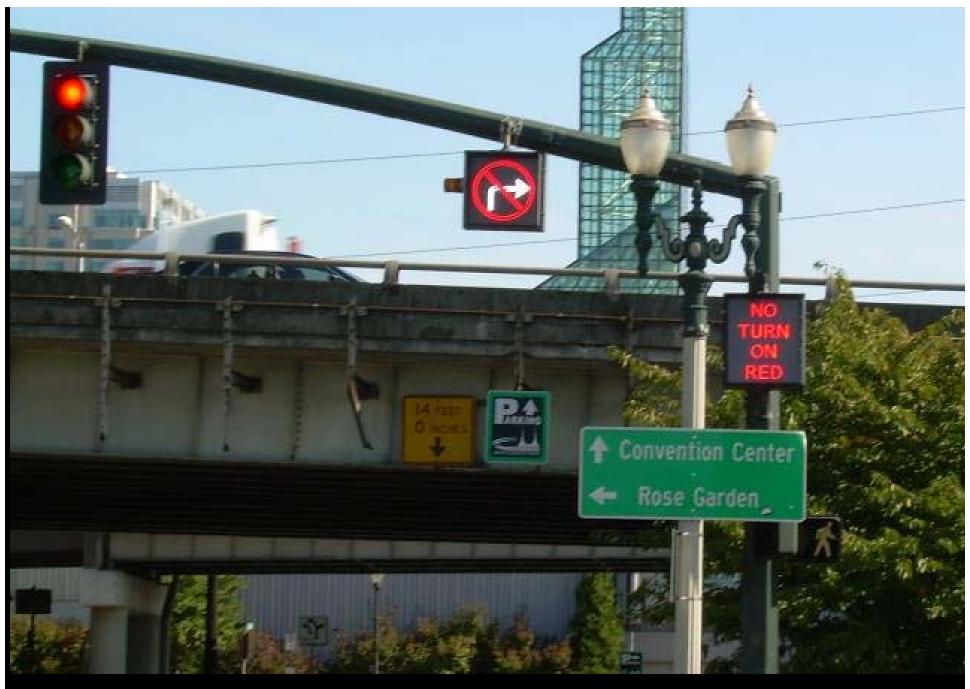

Portland's First Bike Signal



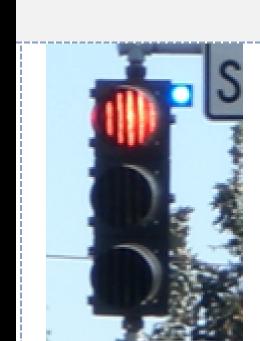
Scramble Phase Signal N Interstate Ave & Oregon St

- Exclusive bike & pedestrian phase
- Bikes cross diagonally from southwest to northeast
- Movement controlled by a bike signal

Scramble Phase Signal N Interstate Ave & Oregon St



Bicycle approach on the SW corner of the intersection


Red bike signal phase

Green bike signal phase

No right turn on red display during green bike signal phase

Signage

(Portland, OR)

(Long Beach, CA)

(e) Signage

(Vancouver, BC)

(Eugene, OR)

(Minneapolis, MN)

Detection Light

On backplate

Black on white

Mounting Location

(Austin, TX)

Separate pole

(Minneapolis, MN)

Same as vehicle

(Portland, OR)

Euro-style Near and Far

Placement

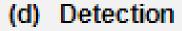
(Vancouver, BC)

Near and Far

(Long Beach, CA)

Far only

(Portland, OR)


Far only - Diagonal

Design Elements

Design Element	Number of Intersections			Percent of Intersections			
J	US	CN	Total	US	CN	Total	
Detection Type	Loop	7	0	7	26%	-	11%
	Video	2	0	2	7%	-	3%
	Loop & Push-Button	4	0	4	15%	-	6%
	Push-button Only	2	0	2	7%	-	3%
	No Detection/ Recall	12	36	48	44%	100%	76%
	Unknown	0	0	0	-	-	-
Phasing Type	Exclusive	16	13	29	59%	36%	46%
	Concurrent	7	23	30	26%	64%	48%
	Leading interval	1	0	1	4%	-	2%
	Unknown	3	0	3	11%	-	5%
Restricted Movements	Yes	19	20	39	70%	56%	62%
	No	6	16	22	22%	44%	35%
	Unknown	2	0	2	7%	-	3%
Accompanying	Yes	20	9	29	74%	25%	46%
Signage	No	6	27	33	22%	75%	52%
• • •	Unknown	1	0	1	4%	-	2%

Lens Type & Detection

(c) Insignia

Faces right (Washington, DC)

Faces left (Denver, CO)

Abstract (San Francisco, CA)

Push button (Portland, OR)

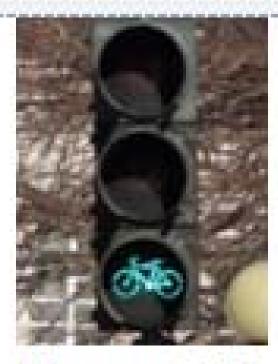
Video (Portland, OR)

(Washington, DC)


(Clackamas Co, OR)

Loop

Matching Housing & Backplate



(Minneapolis, MN)

(Long Beach, CA)

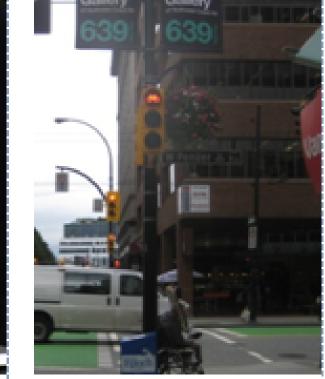
Backplate (None)

(Denver, CO)

(Vancouver, BC)

Mismatched Signal Housing

(Portland, OR)



(Clackamas Co., OR)

Characteristics of Signals

Characteristic		Num	ber of Signal	Heads	Percent of Signal Heads			
orial dots	3113110	US	CN	Total	US	CN	Total	
Backplate Color	Black	18	0	18	35%	-	12%	
	Yellow	10	0	10	19%	-	7%	
	No backplate	24	97	121	46%	100%	81%	
	Unknown	0	0	0	-	-	-	
	Black	32	37	69	62%	38%	46%	
Housing Color	Yellow	12	60	72	23%	62%	48%	
Housing Color	Other	8	0	8	15%	-	5%	
	Unknown	0	0	0	-	-	-	
	12"	35	7	42	67%	7%	28%	
	10"	0	0	0	-	-	-	
Lens Size	8"	9	90	99	17%	93%	66%	
	Other	2	0	2	4%	-	1%	
	Unknown	6	0	6	12%	-	4%	
Bicycle Insignia	Faces Left	19	79	98	37%	81%	66%	
	Faces Right	20	0	20	38%	-	13%	
	No Insignia	12	18	30	23%	19%	20%	
	Unknown	1	0	1	2%	-	1%	
Utilization of	Yes	38	17	55	73%	18%	37%	
	No	13	80	93	25%	82%	62%	
Louvers	Unknown	1	0	1	2%	-	1%	

Placement (b)

(Vancouver, BC)

Near and Far

(Long Beach, CA)

Far only

(Portland, OR)

Far only - Diagonal

(e) Signage

FHWA MUTCD Team

 Request to **Experiment** process is well documented and several agencies have undertaken that effort

Manual on Uniform Traffic Control Devices for Streets and Highways

2009 Edition

Request	Request Type	Requesting Agency	State	<u>Date of</u> <u>Request</u>	<u>Topic</u>	<u>Status</u>	Keywords	
9(09)- 37	Experiment	Oregon DOT	OR	7/3/2012	Bicycle Signal Displays	Active	Bikes Traffic Control Signals	
<u>9(09)-</u> <u>35</u>	Experiment	City of Lakeland	FL	8/24/2012	Bicycle Boxes and Bicycle Signal Displays	Active	Bikes Colored Pavements Pavement Markings Traffic Co Signals	
9(09)- 34	Experimer	City of Chicago	IL	7/24/2012	Bicycle Signal Displays	Active	Bikes Traffic Control Signals	
9(09)- 32	Experiment	City of Sparks	NV	4/17/2012	Bicycle Signal Displays	Active	Bikes Traffic Control Signals	
9(09)- 30	Experiment	Minnesota DOT for Minneapolis	MN	6/11/2012	Bike Signal Indications for Leading Bike Phase	Active	Bikes Traffic Control Signals	
<u>9(09)-</u> 28	Experiment	City of Canton	он	12/8/2011	Bike Signal Heads and Two- Stage Turn Queue Boxes	Active	Bikes Colored Pavements Pavement Markings Traffic Co Signals	
9(09)- 25	Experiment	City and County of Denver	со	10/25/2011	Bike Signal Heads and Chevron Striping	Active	Bikes Pavement Markings Tra Control Signals	
<u>9(09)-</u> 22	Experime :	Clackamas County	OR	7/5/2011	Bike Signal Heads and Diagonal Bike Pavement Markings	Active	Bikes Pavement Markings Tra Control Signals	
9(09)- 16	Experime	Oregon DOT for Ashland	OR	3/10/2011	Bike Signal Heads	Active	Bikes Traffic Control Signals	
9(09)- 13	Experiment	City of Madison	WI	10/7/2010	Bike Signal Heads	Active	Bikes Traffic Control Signals	
9(09)-9	Experiment	Arlington County	VA	8/19/2010	Bike Signal Heads	Active	Bikes Traffic Control Signals	
9(09)-7	Experiment	City of Alexandria	VA	6/18/2010	Bike Signal Heads	Active	Bikes Traffic Control Signals	
9(09)-6	Experiment	Minnesota DOT for	MN	5/11/2010	Bike Pavement Markings and Bike Signal Heads	Active	Bikes Pavement Markings Tra Control Signals	
9-127	Experiment	City of Washington	С	11/4/2009	Bike Boxes and Bike Signal Heads	Active	Bikes Pavement Markings Tra Control Signals	
9-112	Experiment	City of Long Beach	A	1/27/2009	Green Markings and Bike Signal Heads	Active	Bikes Colored Pavements Pavement Markings Traffic Co Signals	
<u>9-76</u>	Experiment	City and County of Denver	со	6/22/2004	Bike Traffic Signal Heads [countdowns added in 2008]	Final Report Received	Bikes Traffic Control Signals	

Interim Approval defines uses for Bicycle Signal Faces

Bicyclist non-compliance with the previous traffic control;

Provide a leading or lagging bicycle interval;

Continue the bicycle lane on the right-hand side of an exclusive turn lane (Section 9C.04);

Augment the design of a segregated counter-flow bicycle facility; and

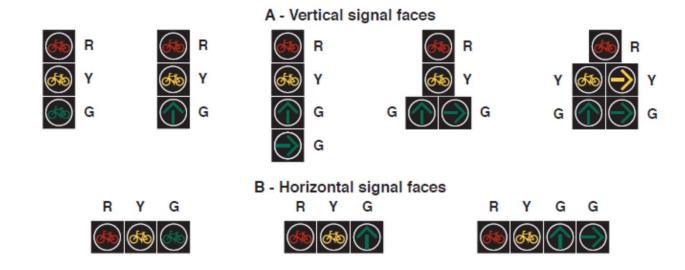
Complex intersections, conflict areas, or signal control.

MUTCD Interim Approval, Part 1

- Requires No Turn On Red without consideration of the intensity or volume of the conflict
- Bicycle Signal Indications identifies flashing Green as an option
- differences in interpretation what is "Protected Only"
- Requires 3 feet separation between signal heads

MUTCD Interim Approval, Part 2

- Arrows shall be used as a part of the bicycle signal to accomplish "turn prohibitions".
- Bicycle Signal sign "shall be installed immediately adjacent to every bicycle signal face"
- Restricts the use of a bicycle signal face with Pedestrian Hybrid Beacons
- "Scramble" Phases shall not be used (restricts diagonal bike movements)


Interim Approval under the MUTCD

- Optional use, jurisdictions are not required to use these devices
- Must apply for, and receive approval from FHWA
- Interim Approval 16
 - □ Adopted in 2013
 - Allows for bicycle signal faces

Bicycle Devices Under Interim Approval

- Interim Approval 16 Bicycle Signal Faces
 - Part 9 allows for the use of standard circular traffic signals to control bicycle facilities
 - IA-16 allows for the use of signal faces including bicycle symbols

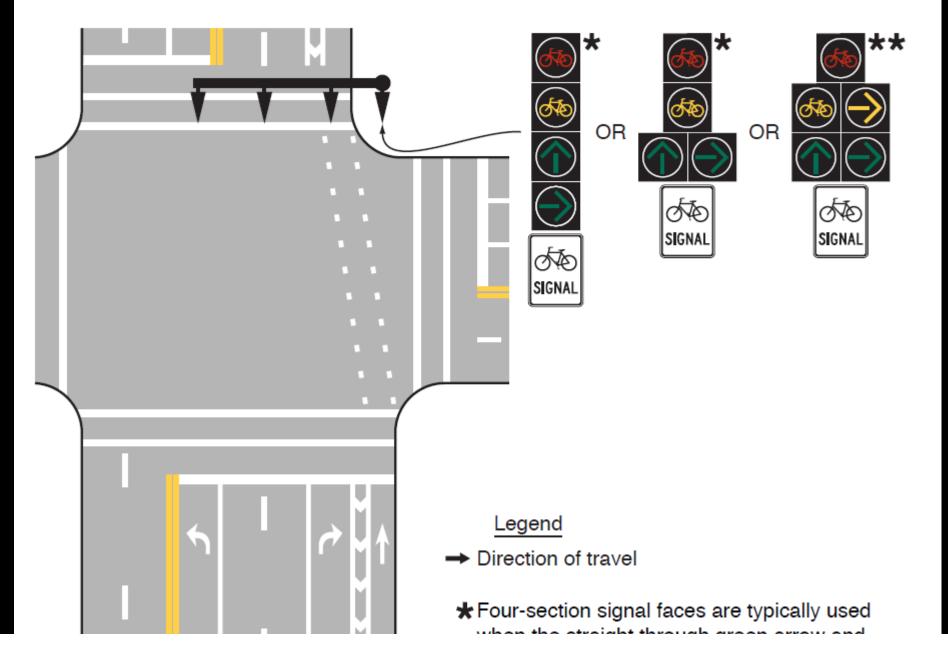
Bicycle Devices Under Interim Approval

- Interim Approval 16 Bicycle Signal Faces
 - IA-16 restricts the operation of bicycle signal faces where there are potentially conflicting motor vehicle movements
 - Permissive motor vehicle movements across bicycle signal face-controlled movements are non-compliant with IA-16
 - Experimentation is being conducted with this operation

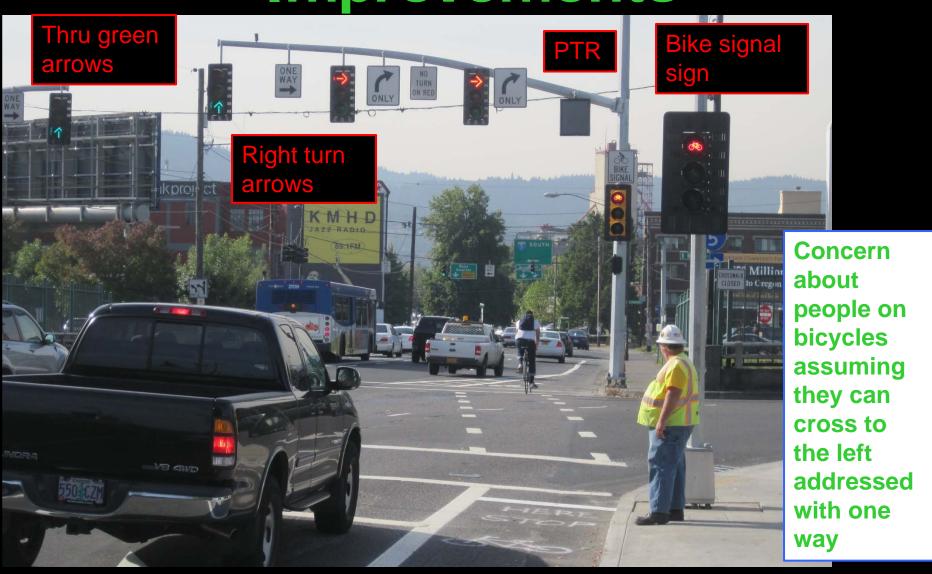
Bicycle TCDs Under Experimentation

Bicycle Signals allowing Conflicting Movements

- □ IA-16 does not allow bicycle signal faces to be used where there are conflicting motor vehicle movements
- □ FHWA has received many requests to relax this provision but no data or observations have been submitted
 - FHWA is aware that jurisdictions are operating bicycle signals in this manner but none that have collected operational or conflict data

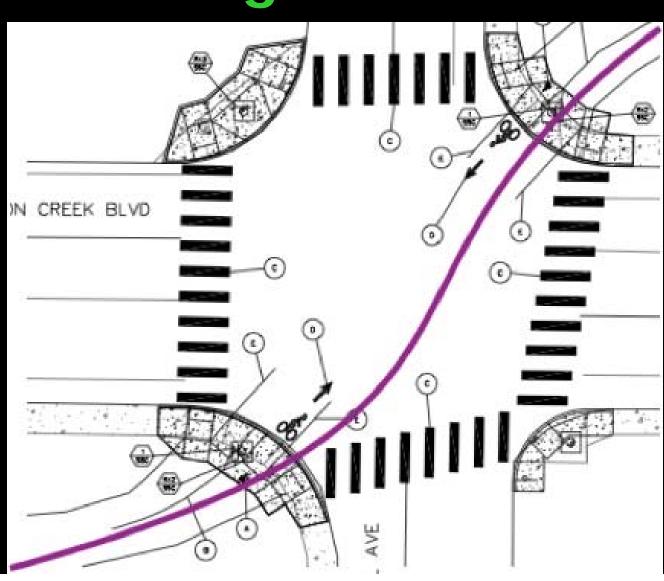


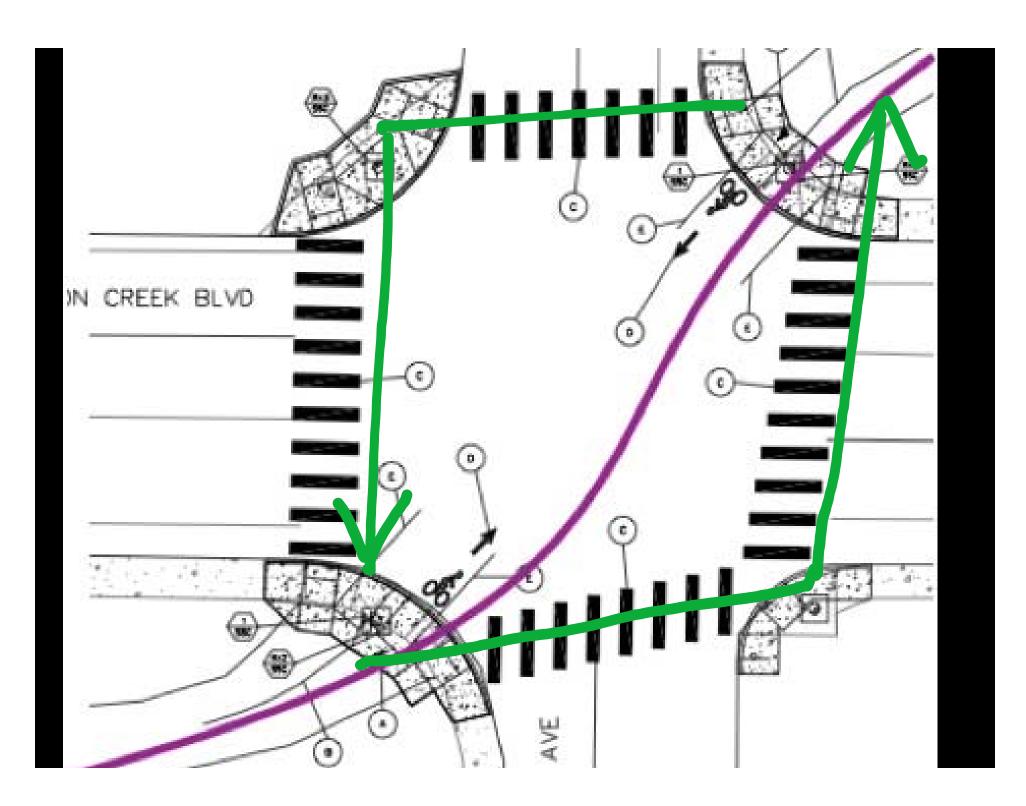
Bicycle TCDs Under Experimentation


Bicycle Signals allowing Conflicting Movements

- Several experiments with this operation
 - Some show bicyclists a green bicycle indication, some show a flashing yellow bicycle indication
 - Critical observations conflicts and interactions between motorists and bicyclists while conflicts are permitted
 - Do motorists and bicyclists understand the conflicts, rights, and responsibilities at these locations?
 - Flashing yellow arrows shown to turning motorists to indicate additional degree of conflict

Attachment IA-16-2 Example of How to Prohibit a Left-Turning Bike Movement


N Broadway & Williams Improvements



N Broadway & Williams Improvements

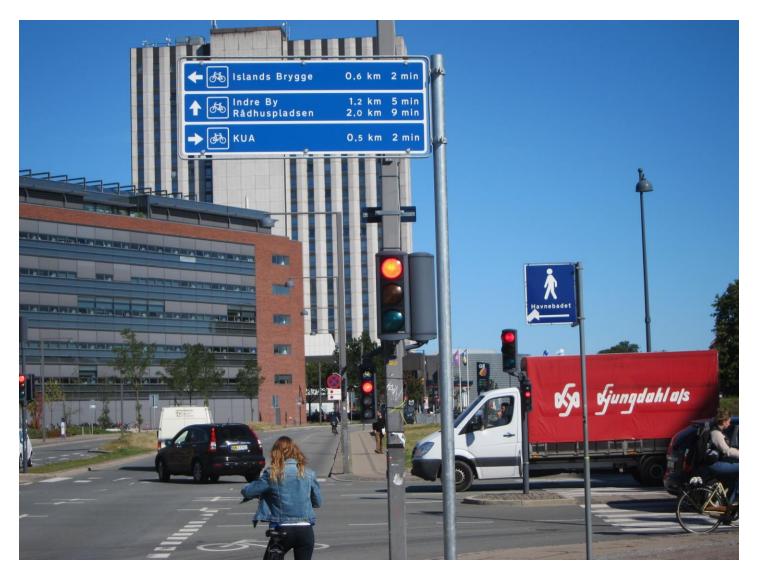
Disallows some Diagonal Crossings without Peds

Using Bicycle Signal Faces

Emerging Practices

Speaker Biography

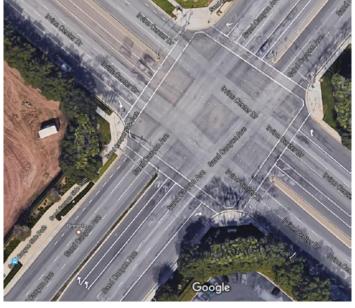
- Rock Miller, PE (CA and HI), TE (CA), PTOE (ITE)
- President (2012) Institute of Transportation Engineers
- US National Committee on Uniform Traffic Control Devices
 - Bicycle Technical Committee
- TRB Bicycle Research Committee
- CA Traffic Control Devices Committee
 - **–** 714-743-1415
 - RockMiller49@yahoo.com



Standard Copenhagen Bike Signal

Thematic Danish Bike Signal

Using Bicycle Signals


Danish Intersection with Bike Signals and Wayfinding

Rush Hour in Copenhagen with Bike Signal Control

Why Use Bike Signals?

What direction is Green?

How long before turning left?

Using Bicycle Signals

Two "T" Intersections... U.S. and Denmark

Montreal Traffic Control

No Room for Right Turn Lane. Right Turn Vehicles must wait at onset of green (5-6 sec)

Bike Signals and Users

- Over 100 known intersections in the US
- Another 100 in Canada
- List is Growing as Agencies Respond
 - Rmiller49@socal.rr.com

One Way Street Examples

Long Beach, CA

- One or two way cycling
- Works well on downtown
 One Way Streets
- Left Side Avoids Transit
- Curbs, planters, parking, etc
- Must be able to sweep
- \$30-40k per signalized intersection for poles and bike signals

New York City

Other Treatments Examples

Chicago

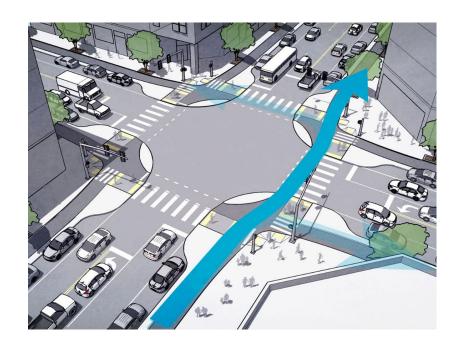
Calgary AB

Redondo Beach

- Two-Way Bikeway adjacent to 2-Way Traffic
- Heavy Recreational Use
 - All Ages!!
- Good Compliance with Bike Signals
- Three Signalized Intersections
 - Three Control Variations

Using Bicycle Signals

Intersection Turn Treatment



Other Phasing Strategies

- Leading vs Lagging Lefts
- Exclusive bike-only phase
- Vehicle right turn arrow with cross street left turn
- Green wave benefits

Protected Intersection

- Needs a Lot of Room
- Existing Traffic Signals may need to be Rebuilt
- Need a Car Length for Right Turns (or RT Lane)
- European examples
 often include controlled
 right turn lanes plus
 bike signals

Conclusions

- Trade off
 - Construction cost vs reduction in conflicts
- Early Adopters are Trading Success Stories
- More Complete Guidance is Emerging
- Design Guides are Citing Knowledge Gaps
 - But are having trouble staying current
- MUTCD also following
 - Successful projects often are in front of MUTCD

Discussion

⇒ Send us your questions

- ⇒ Follow up with us:
 - ⇒ Peter Koonce <u>peter.koonce@gmail.com</u>
 - ⇒ Rock Miller <u>rmiller49@socal.rr.com</u>
 - ⇒ Dave Kirschner david.kirschner@dot.gov
 - ⇒ General Inquiries <u>pbic@pedbikeinfo.org</u>
- ⇒ Archive at www.pedbikeinfo.org/webinars