

How-to-Develop a Pedestrian Safety Action Plan

Engineering Strategies

Hillary Isebrands, PE FHWA Resource Center Safety Specialist

Michael Moule, PE, TE, PTOE Principal Transportation Engineer, Nelson\Nygaard Consulting Associates, Inc.

Engineering: Learning Objectives

At the end of this module, you should be able to:

Describe effective engineering strategies and how to integrate them into your Pedestrian Safety Action Plan

Engineering: Subjects Covered

- ⇒ Walking along the road: the effectiveness of sidewalks and shoulders
- Street crossings: human behavior, midblock crossings, crosswalks, medians, signals
- ⇒ <u>Pedestrian-friendly intersection design:</u> geometry, corner radii, curb extensions, islands
- ⇒ Signals: how to make them work for pedestrians
- **→** Transit: stop locations & ped crossings
- ⇒ Road diets: creating room for pedestrians

Countermeasures for Walking Along the Road Crashes

Rural Environments: Paved Shoulders

Crash Reduction Factor (CRF) = 70%

6' width preferred for effectiveness

Benton Co OR

Urban/suburban Environments: Sidewalks

CRF = 88%

Salem OR

Reno NV

Buffer sidewalks with planter strip/furniture zone:

- **⇒** Space for trees and street furniture
- **⇒** Easy to meet ADA at driveways and curb ramps

Henderson, NV

5 feet needed for two people to walk comfortably side-by-side (or to pass each other)

Casper WY

Mountable curbs are not appropriate on local streets

Sidewalk Corridors—The Zone System

The sidewalk corridor extends from the edge of roadway to the right-of-way and is divided into 4 zones:

- Curb zone
- **⇒** Furniture zone
- **⇒** Pedestrian zone
- **⇒** Frontage zone

The Zone System – Residential Street

The Zone System – Commercial Street

Washington DC

Driveways

Driveways are the source of most conflicts with motor vehicles on sidewalks

Driveways built like intersections encourage high-speed turns

Driveways built like driveways encourage slow-speed turns

Separated sidewalk keeps sidewalk level at driveways

Salem OR

ADA Requirements For Sidewalks

Well-designed sidewalks meet ADA:

- Sidewalks should be clear of obstructions:
 - 3' min clearance, 4' proposed
- Sidewalk should have smooth surface
- ⇒ Sidewalk should be at 2% max crossslope including at driveways

The zone system creates a safer and more pleasant place to walk, <u>and</u> makes it easier to meet ADA requirements.

Countermeasures for Crossing Crashes

Crossing Crashes: Speed Matters

Speed Affects:

- 1. Drivers' field of vision & ability to see pedestrians
- 2. Drivers' ability to react and avoid a crash
- 3. Crash Severity

Speed Affects Crash Avoidance

High speeds equate to greater reaction and stopping distance

Speed Affects Crash Avoidance

High speeds lead to greater chance of serious injury & death

65 km/h **40 MPH**

85%

5%

32 km/h 20 MPH

of dooth if hit hu a mateurschi

Pedestrians' chances of death if hit by a motor vehicle SOURCE: Killing Speed and Saving Lives, UK Department of Transportation

Crosswalks

Crosswalks are provided to indicate to pedestrians where to cross and to indicate to drivers where to expect pedestrians

Results of Most Recent Crosswalk Safety Study (Zegeer et al 2002)

Marked (alone) vs. Unmarked Analysis

- □ Two-lane roads: No significant difference in crash rates
- → Multilane roads (3 or more lanes)
 - Under 12,000 ADT: no significant difference in crash rates
 - Over 12,000 ADT w/ no median: crash rate for marked > unmarked
 - Over 15,000 ADT & w/ median: crash rate for marked > unmarked

- > Pedestrians are not less vigilant in marked crosswalks:
 - Looking behavior increased after crosswalks installed

One explanation of higher crash rate at marked crosswalks: multiple-threat crash

1st car stops too close, masks visibility for driver in 2nd lane

Solution: advance stop bar (comes later...)

Study Recommendations

- 1. OK to mark crosswalks on 2-lane roadways
- 2. On multi-lane roadways, marked crosswalks alone are not recommended on roadways with:
 - ADT > 12,000 w/o median
 - ADT > 15,000 w median*
 - Speeds greater than 40 mph
- 3. Use raised medians to reduce risk
- 4. Signals or other treatments should be considered where many young and/or elderly pedestrians
 - * Note: effect of advance stop bar not studied (none at any observed sites)

Increase Effectiveness Of Crosswalks With:

- **⇒** Proper location
- **⇒** High Visibility Markings
- **⇒** Illumination
- **⇒** Signing
- **⇒** Advance Stop Bars
- **⇒ Median Islands**
- **Curb Extensions**
- **⇒** Signals

Marked crosswalks must be visible to the DRIVER

What the pedestrian sees

Atlanta GA

Marked crosswalks must be visible to the DRIVER

What the driver sees (same crosswalk)

Atlanta GA

Crosswalk Visibility

Crosswalk Marking Types

Place longitudinal markings to avoid wheel tracks, reducing wear & tear & maintenance

Sweet Home OR

In-street pedestrian crossing signs

Rectangular Rapid Flash LED Beacon

- Not in MUTCD received Interim approval from FHWA in July 2008
- ⇒ Studies indicate motorist yield rates increased from about 20% to 80%
- ⇒ Beacon is yellow, rectangular, and has a rapid "wig-wag" flash
- ⇒ Beacon located between the warning sign and the arrow plaque
- Must be pedestrian activated (pushbutton or passive)

Advance Stop or Yield Line: Reduces Multiple-threat Crashes

Multiple Threat Crash Problem

1st car stops to let pedestrian cross, blocking sight lines

2nd doesn't stop, hits pedestrian at high speed.

Multiple Threat Crash Solution

Advance stop/yield line

1st car stops further back; opening up sight lines

2nd car can be seen by pedestrian

R1-5 R1-5a (Use where local law says yield to pedestrians)

R1-5b R1-5c (Use where local law says stop for pedestrians)

Milwaukee WI

Advanced yield line (shark's teeth) & sign

Portland OR

Advanced stop line and sign

Raised Medians And Islands Reduce Pedestrian Crashes:

At unmarked crosswalks CRF = 39%

Continuous raised median – Basic Principle Breaks long complex crossing into two simpler crossings

Medians make random crossings safer

Crossing island at marked crosswalk - Same Principle Breaks long complex crossing into two simpler crossings

Islands improve safety at designated crosswalks

Pedestrian Signal

Washington DC

Provide a HOT response Otherwise pedestrians won't wait for the light

Pedestrian Signal

2-stage crossing increases effectiveness and disrupts traffic less

1. Ped pushes button, waits, crosses to island

2. Ped crosses to island, proceeds to 2nd button

3. Ped on island – pushes button to finish crossing

Countermeasures for Intersection Crashes

Characteristics To Make Intersections Safer For Pedestrians

Pedestrian-friendly intersections are:

- **⇒** Tight
- **⇒** Simple
- **⇒** Square
- ⇒ Slow speed
- **⇒** Easy to understand
 - If complex, broken into smaller steps
- **⇒** Avoid free-flow movements

Curb radius — small radii are safer for pedestrians

Large corner radii:

- Increase crossing distance,
- ⇒ Allow high-speed turns by cars

22 m (74')

Canyonville OR

Must consider large vehicles, but don't choose larger design vehicle than necessary

Curb extensions

Most focus has been on reducing crossing distance

Curb extensions

Most focus has been on reducing crossing distance

Other advantages

- **⇒** Better visibility (both ways)
- ⇒ Traffic calming
- **⇒** Room for street furniture

Curb extensions should be the width of the parking lane and not encroach on bike lanes or travel lanes

Pedestrians wait where they can see, in front of parked cars

Curb ext. places pedestrian where he can see and be seen

Islands at Intersections

Benefits:

- Separate conflicts and decision points
- □ Reduce crossing distance
- **⇒** Improve signal timing
- **⇒** Reduce crashes

Right-Turn Slip Lane: Design for pedestrians

High speed, head turner, low visibility of pedestrians

Slower vehicle speeds, good angle, good visibility of pedestrians

Countermeasures for Signalized Intersection Crashes

Pedestrian signals should be provided, otherwise pedestrians don't know when to cross

Fredericksburg VA

Ped head placement: close to crosswalk, visible to pedestrians, especially with long crosswalk

Poor example

Good example

Reno NV

Pedestrian count-down signal tells pedestrians how much crossing time is left. 25% CRF in San Francisco

Proper Push-button Placement

The MUTCD recommends these dimensions

Protected-Only Left Turn Phasing

CRF up to 70%

Pedestrians cross at same time as left-turning car;

Drivers turning left on a green ball don't look for pedestrians.

Protected Left Turns

Protected Left Turns

Pedestrians cross after most leftturning cars (protected phase); Pedestrian and remaining cars <u>are</u> in conflict (permissive phase)

Protected/permissive Left Turns: Solutions

1. Provide protected-permissive phasing by default, but revert to protected-only when pedestrian button is pushed

Protected/permissive Left Turns: Solutions

1. Provide protected-permissive phasing by default, but revert to protected-only when pedestrian button is pushed

2. Flashing left Yellow Arrow during steady green ball warns drivers: yield to pedestrians and oncoming vehicles (details next)

Portland OR

Use Short Signal Cycle Length

Long wait causes stacking: pedestrians wait in street, or don't wait and cross against the signal

Salem OR

At high-use crosswalks, pedestrians should get a signal at every cycle

Set pedestrian signal to recall to "Walk" when major street is set to recall to green

LPI

LPI = Lead Pedestrian Interval

LPI gives pedestrians a head start

Looks like a regular signal to drivers

Salem OR

LPI: WALK comes on 3 seconds prior to the vehicular green; pedestrians can enter crosswalk before turning vehicles arrive there.

Pasadena CA

Exclusive Pedestrian Phase (Barnes Dance)

Exclusive pedestrian phase increases safety but increases delay for all including pedestrians

Transit

- ⇒ Ensure transit stops are convenient and accessible;
- **Ensure** users can safely cross the street at transit stops.
- **→ Many pedestrian crashes are associated with transit**
- "Every transit stop is a pedestrian crossing location"

Road Diets

"Classic Road Diet"

4 to 3 lanes

San Antonio TX

Seattle WA

Road diets: reclaim street space for other uses

Charlotte NC

Reclaiming road space creates room for ped islands

Charlotte NC

Reclaiming road space creates room for ped islands

Charlotte NC

Reclaiming road space creates room for ped islands

Road Diets

This space was recaptured from a 4th travel lane

Portland OR

Benefits of Road Diets for Pedestrians

- **⇒** Reduces crossing distance
- → Reduces "multiple threat" crash types
- ⇒ Provides room for crossing island to break crossing into 2 simpler crossings
- **⇒** Reduces top end travel speeds
- ⇒ Buffers sidewalk from travel lanes (parking or bike lane)
- ⇒ Reclaims street space for "higher and better use" than moving peak hour traffic

Engineering Strategies Summary:

- **⇒** Sidewalks reduce walking along the road crashes
- ⇒ Human behavior must be considered when choosing street solutions
- ⇒ Street crossing solution include crosswalks, medians, signals
- ⇒ Pedestrian-friendly intersections depend on good geometry, tight corner radii, curb extensions, islands
- **⇒** Signals can be improved for pedestrians
- **⇒** Road diets create safer conditions for pedestrians

Engineering: Learning Objectives

You should be able to:

⇒ Describe effective engineering strategies and how to integrate them into your Pedestrian Safety Action Plan

Questions?

